Skip to main content
Review

Potential mechanisms for the effects of far-infrared on the cardiovascular system – a review

Published Online:https://doi.org/10.1024/0301-1526/a000752

Abstract. Far-infrared (FIR) is a form of thermal radiation, which may have beneficial effects on cardiovascular health. Clinical studies suggest that FIR irradiation may have therapeutic effects in heart failure, myocardial ischaemia and may improve flow and survival of arteriovenous fistula. Animal studies have suggested a wide range of potential mechanisms involving endothelial nitric oxide synthase and nitric oxide bioavailability, oxidative stress, heat shock proteins and endothelial precursor cells. However, the exact cellular and molecular mechanism of FIR on the cardiovascular system remains elusive. The purpose of this review is to discuss the current literature, focusing on mechanistic studies involving the cardiovascular system, and with a view to highlighting areas for future investigation.

Literature

  • Vatansever F & Hamblin MR. Far infrared radiation (FIR): its biological effects and medical applications. Photonics Lasers Med. 2012 Nov 1;4:255–66. First citation in articleMedlineGoogle Scholar

  • Sobajima M, Nozawa T, Fukui Y, Ihori H, Ohori T & Fujii N, et al. Waon Therapy Improves Quality of Life as Well as Cardiac Function and Exercise Capacity in Patients With Chronic Heart Failure. Int Heart J. 2015;56(2):203–8. First citation in articleCrossref MedlineGoogle Scholar

  • Fujita S, Ikeda Y, Miyata M, Shinsato T, Kubozono T & Kuwahata S, et al. Effect of Waon therapy on oxidative stress in chronic heart failure. Circ J. 2011;75(2):348–56. First citation in articleCrossref MedlineGoogle Scholar

  • Lin C-C, Chang C-F, Lai M-Y, Chen T-W, Lee P-C & Yang W-C. Far-infrared therapy: a novel treatment to improve access blood flow and unassisted patency of arteriovenous fistula in hemodialysis patients. J Am Soc Nephrol. 2007;18(3):985–92. First citation in articleCrossref MedlineGoogle Scholar

  • Toyokawa H, Matsui Y, Uhara J, Tsuchiya H, Teshima S & Nakanishi H, et al. Promotive effects of far-infrared ray on full-thickness skin wound healing in rats. Exp Biol Med (Maywood). SAGE Publications; 2003 Jun 1;228(6):724–9. First citation in articleGoogle Scholar

  • Vita JA & Keaney JF. Endothelial function: a barometer for cardiovascular risk? Circulation. 2002 Aug 6;106(6):640–2. First citation in articleCrossref MedlineGoogle Scholar

  • Lin C-C, Liu X-M, Peyton K, Wang H, Yang W-C & Lin S-J, et al. Far infrared therapy inhibits vascular endothelial inflammation via the induction of heme oxygenase-1. Arterioscler Thromb Vasc Biol. 2008;28(4):739–45. First citation in articleCrossref MedlineGoogle Scholar

  • Hsu Y-H, Chen Y-C, Chen T-H, Sue Y-M, Cheng T-H & Chen J-R, et al. Far-infrared therapy induces the nuclear translocation of PLZF which inhibits VEGF-induced proliferation in human umbilical vein endothelial cells. PLoS One. 2012;7(1):e30674. First citation in articleCrossref MedlineGoogle Scholar

  • Park J-H, Lee S, Cho D-H, Park YM, Kang D-H & Jo I. Far-infrared radiation acutely increases nitric oxide production by increasing Ca2+ mobilization and Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179. Biochem Biophys Res Commun. 2013 Jul;436(4):601–6. First citation in articleCrossref MedlineGoogle Scholar

  • Lin T-C, Lin C-S, Tsai T-N, Cheng S-M, Lin W-S & Cheng C-C, et al. Stimulatory Influences of Far Infrared Therapy on the Transcriptome and Genetic Networks of Endothelial Progenitor Cells Receiving High Glucose Treatment. Acta Cardiol Sin. Taiwan Society of Cardiology; 2015 Sep;31(5):414–28. First citation in articleGoogle Scholar

  • Wang HW, Su SH, Wang YL, Chang ST, Liao KH & Lo HH, et al. MicroRNA-134 contributes to glucose-induced endothelial cell dysfunction and this effect can be reversed by farinfrared irradiation. PLoS One. Public Library of Science; 2016 Jan 1;11(1). First citation in articleGoogle Scholar

  • Lin C-C, Chung M-Y, Yang W-C, Lin S-J & Lee P-C. Length polymorphisms of heme oxygenase-1 determine the effect of far-infrared therapy on the function of arteriovenous fistula in hemodialysis patients: a novel physicogenomic study. Nephrol Dial Transplant. 2013 May 1;28(5):1284–93. First citation in articleCrossref MedlineGoogle Scholar

  • Inoue S, Takemoto M, Chishaki A, Ide T, Nishizaka M & Miyazono M, et al. Leg heating using far infra-red radiation in patients with chronic heart failure acutely improves the hemodynamics, vascular endothelial function, and oxidative stress. Intern Med. 2012;51(17):2263–70. First citation in articleCrossref MedlineGoogle Scholar

  • Masuda A, Miyata M, Kihara T, Minagoe S & Tei C. Repeated sauna therapy reduces urinary 8-Epi-Prostaglandin F2α. Jpn Heart J. 2004 Apr 14;45(2):297–303. First citation in articleCrossref MedlineGoogle Scholar

  • Shinsato T, Miyata M, Kubozono T, Ikeda Y, Fujita S & Kuwahata S, et al. Waon therapy mobilizes CD34+ cells and improves peripheral arterial disease. J Cardiol. Japanese College of Cardiology; 2010;56(3):361–6. First citation in articleGoogle Scholar

  • Sobajima M, Nozawa T, Ihori H, Shida T, Ohori T & Suzuki T, et al. Repeated sauna therapy improves myocardial perfusion in patients with chronically occluded coronary arteryrelated ischemia. Int J Cardiol. 2013 Jul;167(1):237–43. First citation in articleCrossref MedlineGoogle Scholar

  • Ohori T, Nozawa T, Ihori H, Shida T, Sobajima M & Matsuki A, et al. Effect of Repeated Sauna Treatment on Exercise Tolerance and Endothelial Function in Patients With Chronic Heart Failure. Am J Cardiol. 2012 Jan;109(1):100–4. First citation in articleCrossref MedlineGoogle Scholar

  • Miyata M, Kihara T, Kubozono T, Ikeda Y, Shinsato T & Izumi T, et al. Beneficial effects of Waon therapy on patients with chronic heart failure: Results of a prospective multicenter study. J Cardiol. 2008 Oct;52(2):79–85. First citation in articleCrossref MedlineGoogle Scholar

  • Kihara T, Biro S, Imamura M, Yoshifuku S, Takasaki K & Ikeda Y, et al. Repeated sauna treatment improves vascular endothelial and cardiac function in patients with chronic heart failure. J Am Coll Cardiol. 2002 Mar;39(5):754–9. First citation in articleCrossref MedlineGoogle Scholar

  • Imamura M, Biro S, Kihara T, Yoshifuku S, Takasaki K & Otsuji Y, et al. Repeated thermal therapy improves impaired vascular endothelial function in patients with coronary risk factors. J Am Coll Cardiol. 2001;38(4):1083–8. First citation in articleCrossref MedlineGoogle Scholar

  • Lin C-C, Chung M-Y, Yang W-C, Lin S-J & Lee P-C. Length polymorphisms of heme oxygenase-1 determine the effect of far-infrared therapy on the function of arteriovenous fistula in hemodialysis patients: a novel physicogenomic study. Nephrol Dial Transplant. 2013 May 1;28(5):1284–93. First citation in articleCrossref MedlineGoogle Scholar

  • Kuwahata S, Miyata M, Fujita S, Kubozono T, Shinsato T & Ikeda Y, et al. Improvement of autonomic nervous activity by Waon therapy in patients with chronic heart failure. J Cardiol. 2011 Jan;57(1):100–6. First citation in articleCrossref MedlineGoogle Scholar

  • Mark PB. Strategies to manage cardiovascular risk in chronic kidney disease. Nephrol Dial Transplant. Oxford University Press; 2018 Jan;33(1):23–5. First citation in articleGoogle Scholar

  • van der Sande C, Kwa M, van Nues R, van Heerikhuizen H, RauA H & Planta R. The pivotal role of nitric oxide for vascular health. J Mol Biol. 1992. p. 223(4). First citation in articleMedlineGoogle Scholar

  • Ziegler T, Silacci P, Harrison VJ & Hayoz D. Nitric Oxide Synthase Expression in Endothelial Cells Exposed to Mechanical Forces. Hypertension. 1998 Aug;32(2):351–6. First citation in articleCrossref MedlineGoogle Scholar

  • Förstermann U & Munzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation. 2006 Apr 4;113(13):1708–14. First citation in articleCrossref MedlineGoogle Scholar

  • Tei C, Horikiri Y, Park JC, Jeong JW, Chang KS & Toyama Y, et al. Acute hemodynamic improvement by thermal vasodilation in congestive heart failure. Circulation. 1995 May 15;91(10): 2582–90. First citation in articleCrossref MedlineGoogle Scholar

  • Akasaki Y, Miyata M, Eto H, Shirasawa T, Hamada N & Ikeda Y, et al. Repeated thermal therapy up-regulates endothelial nitric oxide synthase and augments angiogenesis in a mouse model of hindlimb ischemia. Circ J.;2006 Apr;70(4):463–70. First citation in articleCrossref MedlineGoogle Scholar

  • Ikeda Y, Biro S, Kamogawa Y, Yoshifuku S, Eto H & Orihara K, et al. Repeated thermal therapy upregulates arterial endothelial nitric oxide synthase expression in Syrian golden hamsters. Jpn Circ J. 2001 May;65(5):434–8. First citation in articleCrossref MedlineGoogle Scholar

  • Ikeda Y, Biro S, Kamogawa Y, Yoshifuku S, Eto H & Orihara K, et al. Repeated sauna therapy increases arterial endothelial nitric oxide synthase expression and nitric oxide production in cardiomyopathic hamsters. Circ J. 2005 Jun;69(6):722–9. First citation in articleCrossref MedlineGoogle Scholar

  • Ihori H, Nozawa T, Sobajima M, Shida T, Fukui Y & Fujii N, et al. Waon therapy attenuates cardiac hypertrophy and promotes myocardial capillary growth in hypertensive rats: a comparative study with fluvastatin. Heart Vessels. 2016 Aug 19;31(8): 1361–9. First citation in articleCrossref MedlineGoogle Scholar

  • Sobajima M, Nozawa T, Shida T, Ohori T, Suzuki T & Matsuki A, et al. Repeated sauna therapy attenuates ventricular remodeling after myocardial infarction in rats by increasing coronary vascularity of noninfarcted myocardium. AJP Hear Circ Physiol. 2011 Aug 1;301(2):H548–54. First citation in articleCrossrefGoogle Scholar

  • Miyauchi T, Miyata M, Ikeda Y, Akasaki Y, Hamada N & Shirasawa T, et al. Waon therapy upregulates Hsp90 and leads to angiogenesis through the Akt-endothelial nitric oxide synthase pathway in mouse hindlimb ischemia. Circ J. 2012;76(7):1712–21. First citation in articleCrossref MedlineGoogle Scholar

  • Zuo D, Subjeck J & Wang X-Y. Unfolding the role of large heat shock proteins: new insights and therapeutic implications. Front Immunol. 2016 Jan;7:75. rendertype=abstract First citation in articleCrossref MedlineGoogle Scholar

  • Kalmar B & Greensmith L. Induction of heat shock proteins for protection against oxidative stress. Adv Drug Deliv Rev. Elsevier B. V.; 2009;61(4):310–8. First citation in articleGoogle Scholar

  • Brouet A, Sonveaux P, Dessy C, Balligand JL & Feron O. Hsp90 ensures the transition from the early Ca2+-dependent to the late phosphorylation-dependent activation of the endothelial nitric-oxide synthase in vascular endothelial growth factor-exposed endothelial cells. J Biol Chem. 2001 Aug 31;276(35): 32663–9. First citation in articleCrossref MedlineGoogle Scholar

  • Cantrell DA. Phosphoinositide 3-kinase signalling pathways. J Cell Sci. 2001;114(8). First citation in articleMedlineGoogle Scholar

  • Luo Z, Fujio Y, Kureishi Y, Radu DR, Daumerie G & Fulton D, et al. Acute modulation of endothelial Akt/PKB activity alters nitric oxide–dependent vasomotor activity in vivo. J Clin Invest. 2000;106(4):493–9. First citation in articleCrossref MedlineGoogle Scholar

  • Fernandez-Hernando C, Ackah E, Yu J, Suarez Y, Murata T & Iwakiri Y, et al. Loss of Akt1 leads to severe atherosclerosis and occlusive coronary artery disease. Cell Metab. NIH Public Access; 2007 Dec;6(6):446–57. First citation in articleGoogle Scholar

  • Mukai Y, Rikitake Y, Shiojima I, Wolfrum S, Satoh M & Takeshita K, et al. Decreased vascular lesion formation in mice with inducible endothelial-specific expression of protein kinase Akt. J Clin Invest. 2006 Jan 19;116(2):334–43. First citation in articleCrossref MedlineGoogle Scholar

  • Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y & Walsh K, et al. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature. NIH Public Access; 1999 Jun 10;399(6736):597–601. First citation in articleGoogle Scholar

  • Bae SW, Kim HS, Cha YN, Park YS, Jo SA & Jo I. Rapid increase in endothelial nitric oxide production by bradykinin is mediated by protein kinase A signaling pathway. Biochem Biophys Res Commun. 2003 Jul 11;306(4):981–7. First citation in articleCrossref MedlineGoogle Scholar

  • Heistad DD, Wakisaka Y, Miller J, Chu Y & Pena-Silva R. Novel aspects of oxidative stress in cardiovascular diseases. Circ J. 2009;73(2):201–7. First citation in articleCrossref MedlineGoogle Scholar

  • Flammer AJ, Anderson T, Celermajer DS, Creager MA, Deanfield J & Ganz P, et al. The assessment of endothelial function: from research into clinical practice. Circulation. 2012;126(6): 753–67. First citation in articleCrossref MedlineGoogle Scholar

  • Abraham NG & Kappas A. Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev. 2008 Mar 1;60(1):79–127. First citation in articleCrossref MedlineGoogle Scholar

  • Ryter SW, Alam J & Choi AMK. Heme Oxygenase-1/Carbon Monoxide: From Basic Science to Therapeutic Applications. Physiol Rev. 2006;86:583–650. First citation in articleCrossref MedlineGoogle Scholar

  • Lin C-C, Yang W-C, Chen M-C, Liu W-S, Yang C-Y & Lee P-C. Effect of far infrared therapy on arteriovenous fistula maturation: an open-label randomized controlled trial. Am J Kidney Dis. National Kidney Foundation, Inc.; 2013;62(2):304–11. First citation in articleCrossref MedlineGoogle Scholar

  • Wakabayashi N, Slocum SL, Skoko JJ, Shin S & Kensler TW. When NRF2 talks, who’s listening? Antioxid Redox Signal. 2010 Dec 1;13(11):1649–63. First citation in articleCrossref MedlineGoogle Scholar

  • Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R & Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997 Feb 14;275(5302):964–7. First citation in articleCrossref MedlineGoogle Scholar

  • Freedman SB & Isner JM. Therapeutic angiogenesis for ischemic cardiovascular disease. J Mol Cell Cardiol. 2001 Mar;33(3): 379–93. First citation in articleCrossref MedlineGoogle Scholar

  • Rau C-S, Yang JC-S, Jeng S-F, Chen Y-C, Lin C-J & Wu C-J, et al. Far-Infrared Radiation Promotes Angiogenesis in Human Microvascular Endothelial Cells via Extracellular Signal-Regulated Kinase Activation. Photochem Photobiol. Blackwell Publishing Ltd; 2011 Mar;87(2):441–6. First citation in articleGoogle Scholar

  • Aicher A, Heeschen C, Mildner-Rihm C, Urbich C, Ihling C & Technau-Ihling K, et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med. 2003;9(11):1370–6. First citation in articleCrossref MedlineGoogle Scholar

  • Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia. 2008 Feb 18;51(2):216–26. First citation in articleCrossref MedlineGoogle Scholar

  • Huang P-H, Chen J-W, Lin C-P, Chen Y-H, Wang C-H & Leu H-B, et al. Far infra-red therapy promotes ischemia-induced angiogenesis in diabetic mice and restores high glucosesuppressed endothelial progenitor cell functions. Cardiovasc Diabetol. 2012;11(1):99. First citation in articleCrossref MedlineGoogle Scholar

  • Grote K, Luchtefeld M & Schieffer B. JANUS under stress-role of JAK/STAT signaling pathway in vascular diseases. Vascul Pharmacol. 2005 Nov;43(5):357–63. First citation in articleCrossref MedlineGoogle Scholar

  • Park K-H & Park WJ. Endothelial Dysfunction: Clinical Implications in Cardiovascular Disease and Therapeutic Approaches. J Korean Med Sci. Korean Academy of Medical Sciences; 2015 Sep;30(9):1213–25. First citation in articleCrossref MedlineGoogle Scholar

  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004 Jan 23;116(2):281–97. First citation in articleCrossref MedlineGoogle Scholar

  • Ross R. Inflammation or Atherogenesis. N Engl J Med. 1999; 340(2):115–26. First citation in articleCrossref MedlineGoogle Scholar

  • Chen W, Hwang DW & Hwang SJ. Far Infrared radiation inhibits throboxane A2 receptor gene expression in human umbilical vein endothelial cells. Neph Dial Transplant. 2015 May;30 (Supplement 3):iii572. First citation in articleCrossrefGoogle Scholar