Skip to main content
Published Online:https://doi.org/10.1024/0301-1526/a000759

Abstract. Acute limb ischemia (ALI), a subclass of critical limb ischemia, is a medical emergency. The cause of ALI is usually thrombotic or embolic in nature, and the specific etiology often dictates the appropriate therapy. While the diagnosis is a clinical with common presenting symptoms, advances in ultrasound, computed tomography, and magnetic resonance technology have impacted the diagnosis and subsequent therapy. In ALI, the time to revascularization is critical and computed tomography angiography (CTA) provides a highly sensitive and specific technique for rapidly identifying occlusions and precisely defining vascular anatomy prior to interventions. In patients with significant renal disease, magnetic resonance angiography with or without contrast provides effective alternatives at the expense of imaging time. Treatment can include a variety of endovascular or surgical interventions, including thromboembolectomy, angioplasty, or bypass. Proper evaluation of the etiology of the ischemia, affected vasculature, and medical history is critical to select appropriate treatment and improve patient outcomes. Here, we examine the presentation, evaluation, and treatment of ALI and the role of CTA in diagnosis and therapy.

Literature

  • Creager MA, Kaufman JA & Conte MS. Clinical practice. Acute limb ischemia. N Engl J Med. 2012;366(23):2198–206. First citation in articleCrossref MedlineGoogle Scholar

  • Davis FM, Albright J, Gallagher KA, Gurm HS, Koenig GC & Schreiber T, et al. Early Outcomes following Endovascular, Open Surgical, and Hybrid Revascularization for Lower Extremity Acute Limb Ischemia. Ann Vasc Surg. 2018. First citation in articleCrossrefGoogle Scholar

  • Dryjski M & Swedenborg J. Acute ischemia of the extremities in a metropolitan area during one year. J Cardiovasc Surg (Torino). 1984;25(6):518–22. First citation in articleMedlineGoogle Scholar

  • Eyers P & Earnshaw JJ. Acute non-traumatic arm ischaemia. Br J Surg. 1998;85(10):1340–6. First citation in articleCrossref MedlineGoogle Scholar

  • Earnshaw JJ, Whitman B & Foy C. National Audit of Thrombolysis for Acute Leg Ischemia (NATALI): clinical factors associated with early outcome. J Vasc Surg. 2004;39(5):1018–25. First citation in articleCrossref MedlineGoogle Scholar

  • Eliason JL, Wainess RM, Proctor MC, Dimick JB, Cowan JA, Jr. & Upchurch GR, Jr., et al. A national and single institutional experience in the contemporary treatment of acute lower extremity ischemia. Ann Surg. 2003;238(3):382–9; discussion 9–90. First citation in articleMedlineGoogle Scholar

  • Baril DT, Ghosh K & Rosen AB. Trends in the incidence, treatment, and outcomes of acute lower extremity ischemia in the United States Medicare population. J Vasc Surg. 2014;60(3):669–77 e2. First citation in articleCrossref MedlineGoogle Scholar

  • Walker TG. Acute limb ischemia. Tech Vasc Interv Radiol. 2009;12(2):117–29. First citation in articleCrossref MedlineGoogle Scholar

  • Callum K & Bradbury A. ABC of arterial and venous disease: Acute limb ischaemia. BMJ. 2000;320(7237):764–7. First citation in articleCrossref MedlineGoogle Scholar

  • Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA & Fowkes FGR. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). Journal of Vascular Surgery. 2007;45(1):S5–S67. First citation in articleCrossref MedlineGoogle Scholar

  • Fowkes FG, Rudan D, Rudan I, Aboyans V, Denenberg JO & McDermott MM, et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet. 2013;382 (9901):1329–40. First citation in articleCrossref MedlineGoogle Scholar

  • Kil SW & Jung GS. Anatomical variations of the popliteal artery and its tibial branches: analysis in 1242 extremities. Cardiovasc Intervent Radiol. 2009;32(2):233–40. First citation in articleCrossref MedlineGoogle Scholar

  • Rodriguez-Niedenfuhr M, Vazquez T, Nearn L, Ferreira B, Parkin I & Sanudo JR. Variations of the arterial pattern in the upper limb revisited: a morphological and statistical study, with a review of the literature. J Anat. 2001; 199(Pt 5): 547–66. First citation in articleCrossref MedlineGoogle Scholar

  • Li X & Partovi S. End-organ dysfunction in peripheral arterial disease – it is all about the skeletal muscle microvasculature. Vasa. 2018;47(4):255–7. First citation in articleLinkGoogle Scholar

  • Expert Panel on Vascular I, Weiss CR, Azene EM, Majdalany BS, AbuRahma AF & Collins JD, et al. ACR Appropriateness Criteria Sudden Onset of Cold, Painful Leg. J Am Coll Radiol. 2017; 14(5S): S307–S13. First citation in articleMedlineGoogle Scholar

  • Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA & Fowkes FG, et al. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J Vasc Surg. 2007; 45 Suppl S: S5–67. First citation in articleCrossref MedlineGoogle Scholar

  • Staub D, Partovi S, Imfeld S, Uthoff H, Baldi T & Aschwanden M, et al. Novel applications of contrast-enhanced ultrasound imaging in vascular medicine. Vasa. 2013;42(1):17–31. First citation in articleLinkGoogle Scholar

  • Aschwanden M, Partovi S, Jacobi B, Fergus N, Schulte AC & Robbin MR, et al. Assessing the end-organ in peripheral arterial occlusive disease-from contrast-enhanced ultrasound to blood-oxygen-level-dependent MR imaging. Cardiovasc Diagn Ther. 2014;4(2):165–72. First citation in articleMedlineGoogle Scholar

  • Duerschmied D, Zhou Q, Rink E, Harder D, Freund G & Olschewski M, et al. Simplified contrast ultrasound accurately reveals muscle perfusion deficits and reflects collateralization in PAD. Atherosclerosis. 2009;202(2):505–12. First citation in articleCrossref MedlineGoogle Scholar

  • Kaspar M, Partovi S, Aschwanden M, Imfeld S, Baldi T & Uthoff H, et al. Assessment of microcirculation by contrast-enhanced ultrasound: a new approach in vascular medicine. Swiss Med Wkly. 2015; 145: w14047. First citation in articleMedlineGoogle Scholar

  • Leong-Poi H, Kuliszewski MA, Lekas M, Sibbald M, Teichert-Kuliszewska K & Klibanov AL, et al. Therapeutic arteriogenesis by ultrasound-mediated VEGF165 plasmid gene delivery to chronically ischemic skeletal muscle. Circ Res. 2007;101(3):295–303. First citation in articleCrossref MedlineGoogle Scholar

  • Wang X, Hagemeyer CE, Hohmann JD, Leitner E, Armstrong PC & Jia F, et al. Novel single-chain antibody-targeted microbubbles for molecular ultrasound imaging of thrombosis: validation of a unique noninvasive method for rapid and sensitive detection of thrombi and monitoring of success or failure of thrombolysis in mice. Circulation. 2012;125(25):3117–26. First citation in articleCrossref MedlineGoogle Scholar

  • Puppala S & Patel J. Acute limb ischaemia. Imaging. 2009;21(2): 109–21. First citation in articleCrossrefGoogle Scholar

  • Zhang S, Levin DC, Halpern EJ, Fischman D, Savage M & Walinsky P. Accuracy of MDCT in assessing the degree of stenosis caused by calcified coronary artery plaques. AJR Am J Roentgenol. 2008;191(6):1676–83. First citation in articleCrossref MedlineGoogle Scholar

  • Renker M, Nance JW, Jr., Schoepf UJ, O’Brien TX, Zwerner PL & Meyer M, et al. Evaluation of heavily calcified vessels with coronary CT angiography: comparison of iterative and filtered back projection image reconstruction. Radiology. 2011;260(2):390–9. First citation in articleCrossref MedlineGoogle Scholar

  • Guthaner DF, Wexler L, Enzmann DR, Riederer SJ, Keyes GS & Collins WF, et al. Evaluation of peripheral vascular disease using digital subtraction angiography. Radiology. 1983;147(2):393–8. First citation in articleCrossref MedlineGoogle Scholar

  • Collins R, Burch J, Cranny G, Aguiar-Ibanez R, Craig D & Wright K, et al. Duplex ultrasonography, magnetic resonance angiography, and computed tomography angiography for diagnosis and assessment of symptomatic, lower limb peripheral arterial disease: systematic review. BMJ. 2007;334(7606):1257. First citation in articleCrossref MedlineGoogle Scholar

  • Brazeau NF, Pinto EG, Harvey HB, Oliveira GR, Pomerantz BJ & Wicky S, et al. Critical limb ischemia: an update for interventional radiologists. Diagn Interv Radiol. 2013;19(2):173–80. First citation in articleMedlineGoogle Scholar

  • Wilson J, Gleghorn K, Seigel Q & Kelly B. Nephrogenic systemic fibrosis: A 15-year retrospective study at a single tertiary care center. J Am Acad Dermatol. 2017;77(2):235–40. First citation in articleCrossref MedlineGoogle Scholar

  • Daftari Besheli L, Aran S, Shaqdan K, Kay J & Abujudeh H. Current status of nephrogenic systemic fibrosis. Clin Radiol. 2014; 69(7):661–8. First citation in articleCrossref MedlineGoogle Scholar

  • Altaha MA, Jaskolka JD, Tan K, Rick M, Schmitt P & Menezes RJ, et al. Non-contrast-enhanced MR angiography in critical limb ischemia: performance of quiescent-interval single-shot (QISS) and TSE-based subtraction techniques. European radiology. 2017;27(3):1218–26. First citation in articleCrossref MedlineGoogle Scholar

  • Lim RP, Hecht EM, Xu J, Babb JS, Oesingmann N & Wong S, et al. 3D nongadolinium-enhanced ECG-gated MRA of the distal lower extremities: preliminary clinical experience. J Magn Reson Imaging. 2008;28(1):181–9. First citation in articleCrossref MedlineGoogle Scholar

  • Wagner M, Knobloch G, Gielen M, Lauff MT, Romano V & Hamm B, et al. Nonenhanced peripheral MR-angiography (MRA) at 3 Tesla: evaluation of quiescent-interval single-shot MRA in patients undergoing digital subtraction angiography. Int J Cardiovasc Imaging. 2015;31(4):841–50. First citation in articleCrossref MedlineGoogle Scholar

  • Blaisdell FW. The pathophysiology of skeletal muscle ischemia and the reperfusion syndrome: a review. Cardiovasc Surg. 2002; 10(6):620–30. First citation in articleCrossref MedlineGoogle Scholar

  • Behravesh S, Hoang P, Nanda A, Wallace A, Sheth RA & Deipolyi AR, et al. Pathogenesis of Thromboembolism and Endovascular Management. Thrombosis. 2017;2017:3039713. First citation in articleCrossref MedlineGoogle Scholar

  • Zhang YS, Davoudi F, Walch P, Manbachi A, Luo X & Dell’Erba V, et al. Bioprinted thrombosis-on-a-chip. Lab Chip. 2016;16(21): 4097–105. First citation in articleCrossref MedlineGoogle Scholar

  • Wicky S, Pinto EG & Oklu R. Catheter-directed thrombolysis of arterial thrombosis. Semin Thromb Hemost. 2013;39(4):441–5. First citation in articleCrossref MedlineGoogle Scholar

  • Lakhter V, Zack C, Reddy S, Chatterjee S, Aggarwal V & Katz P, et al. Intracranial hemorrhage in patients treated with catheter directed thrombolysis. JACC 2017;69:2018. First citation in articleGoogle Scholar

  • Davies B, Braithwaite BD, Birch PA, Poskitt KR, Heather BP & Earnshaw JJ. Acute leg ischaemia in Gloucestershire. Br J Surg. 1997;84(4):504–8. First citation in articleCrossref MedlineGoogle Scholar

  • Albadawi H, Oklu R, Cormier NR, O’Keefe RM, Heaton JT & Kobler JB, et al. Hind limb ischemia-reperfusion injury in diet-induced obese mice. J Surg Res. 2014;190(2):683–91. First citation in articleCrossref MedlineGoogle Scholar

  • Met R, Bipat S, Legemate DA, Reekers JA & Koelemay MW. Diagnostic performance of computed tomography angiography in peripheral arterial disease: A systematic review and meta-analysis. JAMA. 2009;301(4):415–24. First citation in articleCrossref MedlineGoogle Scholar

  • Jens S, Kerstens MK, Legemate DA, Reekers JA, Bipat S & Koelemay MJ. Diagnostic performance of computed tomography angiography in peripheral arterial injury due to trauma: a systematic review and meta-analysis. Eur J Vasc Endovasc Surg. 2013;46(3):329–37. First citation in articleCrossref MedlineGoogle Scholar

  • Jens S, Koelemay MJ, Reekers JA & Bipat S. Diagnostic performance of computed tomography angiography and contrast-enhanced magnetic resonance angiography in patients with critical limb ischaemia and intermittent claudication: systematic review and meta-analysis. European radiology. 2013;23(11):3104–14. First citation in articleCrossref MedlineGoogle Scholar

  • Werncke T, Ringe KI, von Falck C, Kruschewski M, Wacker F & Meyer BC. Diagnostic Confidence of Run-Off CT-Angiography as the Primary Diagnostic Imaging Modality in Patients Presenting with Acute or Chronic Peripheral Arterial Disease. Plos one. 2015;10(4):e0119900. First citation in articleCrossref MedlineGoogle Scholar

  • Kim JW, Choo KS, Jeon UB, Kim TU, Hwang JY & Yeom JA, et al. Diagnostic performance and radiation dose of lower extremity CT angiography using a 128-slice dual source CT at 80 kVp and high pitch. Acta Radiologica. 2015;57(7):822–8. First citation in articleCrossref MedlineGoogle Scholar

  • Napoli A, Anzidei M, Zaccagna F, Cavallo Marincola B, Zini C & Brachetti G, et al. Peripheral arterial occlusive disease: diagnostic performance and effect on therapeutic management of 64-section CT angiography. Radiology. 2011;261(3):976–86. First citation in articleCrossref MedlineGoogle Scholar

  • Fotiadis N, Kyriakides C, Bent C, Vorvolakos T & Matson M. 64-section CT angiography in patients with critical limb ischaemia and severe claudication: Comparison with digital subtractive angiography. Clinical Radiology. 2011;66(10):945–52. First citation in articleCrossref MedlineGoogle Scholar

  • Gerhard-Herman MD, Gornik HL, Barrett C, Barshes NR, Corriere MA & Drachman DE, et al. 2016 AHA/ACC Guideline on the Management of Patients With Lower Extremity Peripheral Artery Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2017;69(11):1465–508. First citation in articleCrossref MedlineGoogle Scholar