The role of cognitive load in university students' comprehension of multiple documents
Abstract
Abstract. The study investigates the cognitive load of students working on tasks that require the comprehension of multiple documents (Multiple Document Comprehension, MDC). In a sample of 310 students, perceived task difficulty (PD) and mental effort (ME) were examined in terms of task characteristics, individual characteristics, and students' processing behavior. Moreover, it was investigated if PD and ME can still contribute to MDC while controlling for these variables. The perceived difficulty of the task was shown to be related to the number of documents, text length, study level, and sourcing. Mental effort was predicted by text length, study level, and processing time. When including these variables as covariates, cognitive load was incrementally predictive of MDC. The results are discussed in terms of how working memory resources can shape the process of comprehending multiple documents.
Zusammenfassung. Die Studie untersucht das Belastungserleben (Cognitive Load) von Studierenden beim Bearbeiten von Aufgaben, die das Verstehen multipler Dokumente erfordern (Multiple Document Comprehension, MDC). Es wurde geprüft, inwiefern die wahrgenommene Aufgabenschwierigkeit und die mentale Anstrengung von 310 Studierenden durch aufgabenspezifische Eigenschaften, individuelle Merkmale und ihr Bearbeitungsverhalten bestimmt werden und darüber hinaus MDC erklären. Für die Aufgabenschwierigkeit wurde gezeigt, dass sie mit der Dokumentenanzahl, der Textlänge, dem Studienniveau sowie der Berücksichtigung von Quellen in Zusammenhang steht. Die mentale Anstrengung wurde durch die Textlänge, das Studienniveau und Bearbeitungszeiten vorhergesagt. Unter Einschluss dieser Variablen als Kovariaten war das Belastungserleben inkrementell prädiktiv für MDC. Die Ergebnisse werden dahingehend diskutiert, wie Arbeitsgedächtnisressourcen den Prozess des Verstehens multipler Dokumente gestalten können.
References
(2014). Multiple-documents literacy: Strategic processing, source awareness, and argumentation when reading multiple conflicting documents. Learning and Individual Differences, 30, 64 – 76. https://doi.org/10.1016/j.lindif.2013.01.007
(2005).
The split-attention principle in multimedia learning . In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 135 – 146). New York: Cambridge University Press.(2006). Using subjective measures to detect variations of intrinsic cognitive load within problems. Learning and Instruction, 16(5), 389 – 400. https://doi.org/10.1016/j.learninstruc.2006.09.001
(2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1), 1 – 48. https://doi.org/10.18637/jss.v067.i01
(2018).
The role of sourcing in discourse comprehension . In M. F. SchoberD. N. RappM. A. Britt (Eds.), Handbook of Discourse Processes. New York, NY: Taylor & Francis.(2002). Improving students' ability to identify and use source information. Cognition and Instruction, 20(4), 485 – 522.
(2012).
Learning with Multiple Documents: Component skills and their acquisition . In J. R. KirbyM. J. Lawson (Eds.), Enhancing the quality of learning: Dispositions, instruction, and learning processes (pp. 276 – 314). New York: Cambridge University Press.(2004). Facilitating textual integration with macro-structure focusing tasks. Reading Psychology, 25(4), 313 – 339. https://doi.org/10.1080/02702710490522658
(2018). Extending Cognitive Load Theory to Incorporate Working Memory Resource Depletion: Evidence from the Spacing Effect. Educational Psychology Review, 30(2), 483 – 501. https://doi.org/10.1007/s10648-017-9426-2
(2017). The Expertise Reversal Effect is a Variant of the More General Element Interactivity Effect. Educational Psychology Review, 29(2), 393 – 405. https://doi.org/10.1007/s10648-016-9359-1
(2014). Effects of the Physical Environment on Cognitive Load and Learning: Towards a New Model of Cognitive Load. Educational Psychology Review, 26(2), 225 – 244. https://doi.org/10.1007/s10648-014-9262-6
(2007). Cognitive load in hypertext reading: A review. Computers in Human Behavior, 23(3), 1616 – 1641. https://doi.org/10.1016/j.chb.2005.08.012
(2014). The Time on Task Effect in Reading and Problem Solving Is Moderated by Task Difficulty and Skill: Insights From a Computer-Based Large-Scale Assessment. Journal of Educational Psychology, 106(3), 608 – 626.
(2014). Relationships between spontaneous note-taking, self-reported strategies and comprehension when reading multiple texts in different task conditions. Journal of Research in Reading, 37, 141 – 157. https://doi.org/10.1111/j.1467-9817.2012.01536.x
(2019). Validating process variables of sourcing in an assessment of multiple document comprehension. British Journal of Educational Psychology, bjep.12278. https://doi.org/10.1111/bjep.12278
(2013). Assessing metacognitive knowledge: Development and evaluation of a test instrument. Journal of Educational Research Online, 5, 162 – 188.
(1995). How a Cockpit Remembers Its Speeds. Cognitive Science, 19(3), 265 – 288.
(2017). Development and Validation of Two Instruments Measuring Intrinsic, Extraneous, and Germane Cognitive Load. Frontiers in Psychology, 8. https://doi.org/10.3389/fpsyg.2017.01997
(2009). The influence of topic knowledge, external strategy use, and college experience on students' comprehension of controversial texts. Learning and Individual Differences, 19(1), 130 – 134. https://doi.org/10.1016/j.lindif.2008.06.001
(2018). Differentiating Different Types of Cognitive Load: a Comparison of Different Measures. Educational Psychology Review, 30(2), 503 – 529. https://doi.org/10.1007/s10648-017-9404-8
(2015). Evaluating an instrument to measure mental load and mental effort using item response theory. Science Education Review Letters, Research Letters 2015, 1 – 6.
(2018). How to conceptualize, represent, and analyze log data from technology-based assessments? A generic framework and an application to questionnaire items. Behaviormetrika. https://doi.org/10.1007/s41237-018-0063-y
(1977). The measurement of observer agreement for categorial data. Biometrics, 33(1), 159 – 174.
(2007). The impact of presentation format, task assignment, and prior knowledge on students' comprehension of multiple online documents. Journal of Literacy Research, 39(4), 445 – 470.
(2015). The evolution of cognitive load theory and its application to medical education. Perspectives on Medical Education, 4(3), 119 – 127. https://doi.org/10.1007/s40037-015-0192-x
(2009). Note-taking while learning hypermedia: Cognitive and motivational considerations. Computers in Human Behavior, 25(5), 1120 – 1128. https://doi.org/10.1016/j.chb.2009.05.004
(1990). Metamemory: A theoretical framework and new findings. The Psychology of Learning and Motivation, 26, 125 – 141.
(1992). Training Strategies for Attaining Transfer of Problem-Solving Skill in Statistics: A Cognitive-Load Approach. Journal of Educational Psychology, 84(4), 429 – 434.
(2012). An Evolutionary Upgrade of Cognitive Load Theory: Using the Human Motor System and Collaboration to Support the Learning of Complex Cognitive Tasks. Educational Psychology Review, 24(1), 27 – 45. https://doi.org/10.1007/s10648-011-9179-2
(2003). Cognitive Load Measurement as a Means to Advance Cognitive Load Theory. Educational Psychologist, 38(1), 63 – 71. https://doi.org/10.1207/S15326985EP3801_8
(2007). Reading Ability: Lexical Quality to Comprehension. Scientific Studies of Reading, 11(4), 357 – 383.
R Core Team . (2018). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/(2018). psych: Procedures for Psychological, Psychometric, and Personality Research. Evanston, Illinois: Northwestern University. Retrieved from https://CRAN.R-project.org/package=psych
(2017). TAM: Test analysis modules. Retrieved from https://CRAN.R-project.org/package=TAM
(2011). The influence of surface and deep cues on primary and secondary school students assessment of relevance in Web menus. Learning and Instruction, 21(2), 205 – 219. https://doi.org/10.1016/j.learninstruc.2010.02.007
(2009). The impact of learner characteristics on information utilization strategies, cognitive load experienced, and performance in hypermedia learning. Learning and Instruction, 19(5), 387 – 401. https://doi.org/10.1016/j.learninstruc.2009.02.004
Entwicklung und Skalierung eines Tests zur Erfassung des Verständnisses multipler Dokumente von Studierenden [Developing and Scaling a Test of Multiple Document Comprehension in University Students]. Diagnostica.
(in press).(2010). Element Interactivity and Intrinsic, Extraneous, and Germane Cognitive Load. Educational Psychology Review, 22(2), 123 – 138. https://doi.org/10.1007/s10648-010-9128-5
(2011). Cognitive load theory. New York: Springer.
(2007).
Multidimensional Situation Models . In F. SchmalhoferC. A. Perfetti (Eds.), Higher level language processes in the brain: inference and comprehension processes (pp. 311 – 328). Mahwah, NJ: Erlbaum.(2007). Die Validität von Schulnoten zur Vorhersage des Studienerfolgs – eine Metaanalyse [The validity of school grades for predicting study success – a meta-analysis]. Zeitschrift für Pädagogische Psychologie, 21(1), 11 – 27. https://doi.org/10.1024/1010-0652.21.1.11
(2012). Flexible imputation of missing data. Boca Raton, FL: CRC Press.
(1983). The teaching of learning strategies. Innovation Abstracts, 5(32).
(2009). Source Evaluation, Comprehension, and Learning in Internet Science Inquiry Tasks. American Educational Research Journal, 46(4), 1060 – 1106. https://doi.org/10.3102/0002831209333183
(1991). Historical Problem Solving: A Study of the Cognitive Processes Used in the Evaluation of Documentary and Pictorial Evidence. Journal of Educational Psychology, 83(1), 73 – 87.