Skip to main content
Original Communication

How Musicality, Cognition and Sensorimotor Skills Relate in Musically Untrained Children

Published Online:https://doi.org/10.1024/1421-0185/a000238

Abstract. Whereas a growing corpus of research has investigated the impact of music practice on several domains of cognition, studies on the relationships between musicality and other abilities and skills in musically untrained children are scarce. The present study examined the associations between musicality, cognition, and sensorimotor skills in 69 musically untrained primary school children of around 10 years of age, using a test battery of musical, cognitive, and sensorimotor abilities. We analyzed the results using nonparametric correlations and an exploratory factor analysis. It was our anticipation that basic cognitive resources (short-term and working memory, attention, processing speed) would relate to both higher-order cognition and musicality. Results indicated that, in musically untrained children, the interconnections between musical and cognitive abilities restrain to auditory short-term and working memory. Direct associations between musicality and higher-order cognitive processes did not occur. An interesting secondary finding comprised associations between sensorimotor function, as measured by the Purdue Pegboard test, and higher-order cognition. Specifically, we found an association between bimanual coordination of fine finger dexterity and matrix reasoning. This outcome suggests that higher-order cognitive function benefits from an efficient mastering of procedural aspects of sensorimotor skills.

References

  • Anderson, D. I., Campos, J. J., Witherington, D. C., Dahl, A., Rivera, M., He, M., Uchiyama, I., & Barbu-Roth, M. (2013). The role of locomotion in psychological development. Frontiers in Psychology, 4, Article 440. https://doi.org/10.3389/fpsyg.2013.00440 First citation in articleCrossrefGoogle Scholar

  • Anvari, S. H., Trainor, L. J., Woodside, J., & Levy, B. A. (2002). Relations among musical skills, phonological processing, and early reading ability in preschool children. Journal of Experimental Child Psychology, 83(2), 111–130. http://www.ncbi.nlm.nih.gov/pubmed/12408958 First citation in articleCrossrefGoogle Scholar

  • Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829–839. https://doi.org/10.1038/nrn1201 First citation in articleCrossrefGoogle Scholar

  • Bean, J. (2011). Rey auditory verbal learning test, Rey AVLT. Encyclopedia of Clinical Neuropsychology, 2174–2175. First citation in articleCrossrefGoogle Scholar

  • Bergman Nutley, S., Darki, F., & Klingberg, T. (2014). Music practice is associated with development of working memory during childhood and adolescence. Frontiers in Human Neuroscience, 7, Article 926. https://doi.org/10.3389/fnhum.2013.00926 First citation in articleCrossrefGoogle Scholar

  • Brandt, A., Gebrian, M., & Slevc, L. R. (2012). Music and early language acquisition. Frontiers in Psychology, 3, Article 327. https://doi.org/10.3389/fpsyg.2012.00327 First citation in articleCrossrefGoogle Scholar

  • Brickenkamp, R., & Zillmer, E. (1998). The d2 test of attention. 1998, Hogrefe. First citation in articleGoogle Scholar

  • Bugos, J., & Mostafa, W. (2011). Musical training enhances information processing speed. Bulletin of the Council for Research in Music Education, 187, 7–18. First citation in articleGoogle Scholar

  • Bugos, J. A., Perlstein, W. M., McCrae, C. S., Brophy, T. S., & Bedenbaugh, P. H. (2007). Individualized piano instruction enhances executive functioning and working memory in older adults. Aging and Mental Health, 11(4), 464–471. https://doi.org/10.1080/13607860601086504 First citation in articleCrossrefGoogle Scholar

  • Chan, A. S., Ho, Y. C., & Cheung, M. C. (1998). Music training improves verbal memory. Nature, 396(6707), 128. https://doi.org/10.1038/24075 First citation in articleCrossrefGoogle Scholar

  • Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008). Moving on time: Brain network for auditory-motor synchronization is modulated by rhythm complexity and musical training. Journal of Cognitive Neuroscience, 20(2), 226–239. https://doi.org/10.1162/jocn.2008.20018 First citation in articleCrossrefGoogle Scholar

  • Child, D. (2006). The essentials of factor analysis, A&C Black. First citation in articleGoogle Scholar

  • Cohrdes, C., Grolig, L., & Schroeder, S. (2016). Relating language and music skills in young children: A first approach to systemize and compare distinct competencies on different levels. Frontiers in Psychology, 7, Article 1616. https://doi.org/10.3389/fpsyg.2016.01616 First citation in articleCrossrefGoogle Scholar

  • Courey, S. J., Balogh, E., Siker, J. R., & Paik, J. (2012). Academic music: Music instruction to engage third-grade students in learning basic fraction concepts. Educational Studies in Mathematics, 81(2), 251–278. https://doi.org/10.1007/s10649-012-9395-9 First citation in articleCrossrefGoogle Scholar

  • Crespo-Eguilaz, N., Magallon, S., & Narbona, J. (2014). Procedural skills and neurobehavioral freedom. Frontiers in Human Neuroscience, 8, Article 449. https://doi.org/10.3389/fnhum.2014.00449 First citation in articleGoogle Scholar

  • Degé, F., Kubicek, C., & Schwarzer, G. (2015). Associations between musical abilities and precursors of reading in preschool aged children. Frontiers in Psychology, 6, Article 1220. https://doi.org/10.3389/fpsyg.2015.01220 First citation in articleCrossrefGoogle Scholar

  • Degé, F., Wehrum, S., Stark, R., & Schwarzer, G. (2011). The influence of two years of school music training in secondary school on visual and auditory memory. European Journal of Developmental Psychology, 8(5), 608–623. https://doi.org/10.1080/17405629.2011.590668 First citation in articleCrossrefGoogle Scholar

  • Desjardins, C. D. A. (2018). Handbook of educational measurement and psychometrics using R, CRC Press. First citation in articleCrossrefGoogle Scholar

  • Duff, K., Schoenberg, M. R., Scott, J. G., & Adams, R. L. (2005). The relationship between executive functioning and verbal and visual learning and memory. Archives of Clinical Neuropsychology, 20(1), 111–122. https://doi.org/10.1016/j.acn.2004.03.003 First citation in articleCrossrefGoogle Scholar

  • Gordon, E. E. (1989). Manual for the advanced measures of muscial audiation, GIA Publications. First citation in articleGoogle Scholar

  • Gordon, R. L., Shivers, C. M., Wieland, E. A., Kotz, S. A., Yoder, P. J., & Devin McAuley, J. (2015). Musical rhythm discrimination explains individual differences in grammar skills in children. Developmental Science, 18(4), 635–644. https://doi.org/10.1111/desc.12230 First citation in articleCrossrefGoogle Scholar

  • Grahn, J. A., & Rowe, J. B. (2009). Feeling the beat: premotor and striatal interactions in musicians and nonmusicians during beat perception. The Journal of Neuroscience, 29(23), 7540–7548. https://doi.org/29/23/7540[pii]10.1523/JNEUROSCI.2018-08.2009 First citation in articleCrossrefGoogle Scholar

  • Grégoire, J. (2009). L’examen clinique de l’intelligence de l’enfant: Fondements et pratique du WISC-IV, Mardaga. First citation in articleGoogle Scholar

  • Hannon, E. E., & Trainor, L. J. (2007). Music acquisition: effects of enculturation and formal training on development. Trends in Cognitive Sciences, 11(11), 466–472. https://doi.org/10.1016/j.tics.2007.08.008 First citation in articleCrossrefGoogle Scholar

  • Horn, J. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30(2), 179–185. https://EconPapers.repec.org/RePEc:spr:psycho:v:30:y:1965:i:2:p:179-185 First citation in articleCrossrefGoogle Scholar

  • James, C. E., Cereghetti, D. M., Roullet Tribes, E., & Oechslin, M. S. (2015). Electrophysiological evidence for a specific neural correlate of musical violation expectation in primary-school children. NeuroImage, 104, 386–397. https://doi.org/10.1016/j.neuroimage.2014.09.047 First citation in articleCrossrefGoogle Scholar

  • James, C. E., Dupuis-Lozeron, E., & Hauert, C. A. (2012). Appraisal of musical syntax violations by primary school children effects of age and practice. Swiss Journal of Psychology, 71(3), 161–168. https://doi.org/10.1024/1421-0185/a000084 First citation in articleLinkGoogle Scholar

  • James, C. E., Michel, C. M., Britz, J., Vuilleumier, P., & Hauert, C. A. (2012). Rhythm evokes action: Early processing of metric deviances in expressive music by experts and laymen revealed by ERP source imaging. Human Brain Mapping, 33(12), 2751–2767. https://doi.org/10.1002/hbm.21397 First citation in articleCrossrefGoogle Scholar

  • James, C. E., Zuber, S., Dupuis-Lozeron, E., Abdili, L., Gervaise, D., & Kliegel, M. (2020). Formal string instrument training in a class setting enhances cognitive and sensorimotor development of primary school children. Frontiers in Neuroscience, 14, Article 567. First citation in articleCrossrefGoogle Scholar

  • Jaschke, A. C., Eggermont, L. H., Honing, H., & Scherder, E. J. (2013). Music education and its effect on intellectual abilities in children: A systematic review. Reviews in the Neurosciences, 24(6), 665–675. First citation in articleCrossrefGoogle Scholar

  • Jaschke, A. C., Honing, H., & Scherder, E. J. A. (2018). Longitudinal analysis of music education on executive functions in primary school children. Frontiers in Neuroscience, 12, Article 103. https://doi.org/10.3389/fnins.2018.00103 First citation in articleCrossrefGoogle Scholar

  • Josse, J., & Husson, F. (2012). Selecting the number of components in principal component analysis using cross-validation approximations. Computational Statistics & Data Analysis, 56(6), 1869–1879. https://doi.org/10.1016/j.csda.2011.11.012 First citation in articleCrossrefGoogle Scholar

  • Josse, J., Husson, F., & Pagès, J. (2009). Gestion des données manquantes en analyse en composantes principales. Journal de la Société Française de Statistique, 150(2), 28–51. First citation in articleGoogle Scholar

  • Karma, K. (2007). Musical aptitude definition and measure validation: Ecological validity can endanger the construct validity of musical aptitude tests. Psychomusicology, 19(2), 79–90. First citation in articleCrossrefGoogle Scholar

  • Lafayette. (1999). Purdue Pegboard Model# 32020: Instructions and normative data. Lafayette Instruments. First citation in articleGoogle Scholar

  • Little, D. R., Lewandowsky, S., & Craig, S. (2014). Working memory capacity and fluid abilities: The more difficult the item, the more more is better. Frontiers in Psychology, 5, Article 239. https://doi.org/10.3389/fpsyg.2014.00239 First citation in articleCrossrefGoogle Scholar

  • Llorente, A. M. (2003). Children’s color trails test: Professional manual. Psychological Assessment Resources. First citation in articleGoogle Scholar

  • Lorås, H., Stensdotter, A.-K., Öhberg, F., & Sigmundsson, H. (2013). Individual differences in motor timing and its relation to cognitive and fine motor skills. PLoS One, 8(7), e69353. https://doi.org/10.1371/journal.pone.0069353 First citation in articleCrossrefGoogle Scholar

  • Martins, M., Neves, L., Rodrigues, P., Vasconcelos, O., & Castro, S. L. (2018). Orff-based music training enhances children’s manual dexterity and bimanual coordination. Frontiers in Psychology, 9(2616). https://doi.org/10.3389/fpsyg.2018.02616 First citation in articleGoogle Scholar

  • Mathieu, R., Booth, J. R., & Prado, J. (2015). Distributed neural representations of logical arguments in school-age children. Human Brain Mapping, 36(3), 996–1009. https://doi.org/10.1002/hbm.22681 First citation in articleCrossrefGoogle Scholar

  • Miendlarzewska, E. A., & Trost, W. J. (2013). How musical training affects cognitive development: Rhythm, reward and other modulating variables. Frontiers in Neuroscience, 7, Article 279. https://doi.org/10.3389/fnins.2013.00279 First citation in articleGoogle Scholar

  • Moreno, S., Bialystok, E., Barac, R., Schellenberg, E. G., Cepeda, N. J., & Chau, T. (2011). Short-term music training enhances verbal intelligence and executive function. Psychological Science, 22(11), 1425–1433. https://doi.org/10.1177/0956797611416999 First citation in articleCrossrefGoogle Scholar

  • Moreno, S., & Farzan, F. (2015). Music training and inhibitory control: A multidimensional model. Annals of the New York Academy of Sciences, 1337, 147–152. https://doi.org/10.1111/nyas.12674 First citation in articleCrossrefGoogle Scholar

  • Moreno, S., Marques, C., Santos, A., Santos, M., Castro, S. L., & Besson, M. (2009). Musical training influences linguistic abilities in 8-year-old children: More evidence for brain plasticity. Cereb Cortex, 19(3), 712–723. https://doi.org/bhn120[pii]10.1093/cercor/bhn120 First citation in articleCrossrefGoogle Scholar

  • Mous, S. E., Schoemaker, N. K., Blanken, L. M. E., Thijssen, S., van der Ende, J., Polderman, T. J. C., Jaddoe, V. W. V., Hofman, A., Verhulst, F. C., Tiemeier, H., & White, T. (2017). The association of gender, age, and intelligence with neuropsychological functioning in young typically developing children: The Generation R study. Applied Neuropsychology: Child, 6(1), 22–40. https://doi.org/10.1080/21622965.2015.1067214 First citation in articleCrossrefGoogle Scholar

  • Noten, M., Wilson, P., Ruddock, S., & Steenbergen, B. (2014). Mild impairments of motor imagery skills in children with DCD. Research in Developmental Disabilities, 35(5), 1152–1159. https://doi.org/10.1016/j.ridd.2014.01.026 First citation in articleCrossrefGoogle Scholar

  • Oechslin, M. S., Van De Ville, D., Lazeyras, F., Hauert, C. A., & James, C. E. (2013). Degree of musical expertise modulates higher-order brain functioning. Cerebral Cortex, 23(9), 2213–2224. https://doi.org/10.1093/cercor/bhs206 First citation in articleCrossrefGoogle Scholar

  • Patel, A. D. (2012). Language, music, and the brain: A resource-sharing framework. In P. RebuschatM. RohrmeierJ. A. HawkinsI. CrossEds., Language and music as cognitive systems. Oxford University Press. First citation in articleGoogle Scholar

  • Perani, D., Saccuman, M. C., Scifo, P., Spada, D., Andreolli, G., Rovelli, R., Baldoli, C., & Koelsch, S. (2010). Functional specializations for music processing in the human newborn brain [Clinical Trial Research Support, Non-U.S. Gov’t]. Proceedings of the National Academy of Sciences of the United States of America, 107(10), 4758–4763. https://doi.org/10.1073/pnas.0909074107 First citation in articleCrossrefGoogle Scholar

  • Piek, J. P., Dawson, L., Smith, L. M., & Gasson, N. (2008). The role of early fine and gross motor development on later motor and cognitive ability. Human Movement Science, 27. https://doi.org/10.1016/j.humov.2007.11.002 First citation in articleCrossrefGoogle Scholar

  • Rauscher, F. H., Shaw, G. L., Levine, L. J., Wright, E. L., Dennis, W. R., & Newcomb, R. L. (1997). Music training causes long-term enhancement of preschool children’s spatial-temporal reasoning. Neurological Research, 19(1), 2–8. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9090630 First citation in articleCrossrefGoogle Scholar

  • Rey, A. (1964). L’examen clinique en psychologie [The clinical psychological examination]. Presses Universitaires de France. First citation in articleGoogle Scholar

  • Rickard, N. S., Bambrick, C. J., & Gill, A. (2012). Absence of widespread psychosocial and cognitive effects of school-based music instruction in 10–13-year-old students. International Journal of Music Education, 30(1), 57–78. https://doi.org/10.1177/0255761411431399 First citation in articleCrossrefGoogle Scholar

  • Roden, I., Könen, T., Bongard, S., Frankenberg, E., Friedrich, E., & Kreutz, G. (2014). Effects of music training on attention, processing speed and cognitive music abilities: Findings from a longitudinal study. Applied Cognitive Psychology, 28(4), 545–557. https://doi.org/10.1002/acp.3034 First citation in articleCrossrefGoogle Scholar

  • Roden, I., Kreutz, G., & Bongard, S. (2012). Effects of a school-based instrumental music program on verbal and visual memory in primary school children: A longitudinal study. Frontiers in Psychology, 3, Article 572. https://doi.org/10.3389/fpsyg.2012.00572 First citation in articleCrossrefGoogle Scholar

  • Rose, D. C., Jones Bartoli, A., & Heaton, P. (2015). A study of cognitive and behavioural transfer effects associated with children learning to play musical instruments for the first time over one academic year. The Psychology of Education Review. https://uhra.herts.ac.uk/handle/2299/18872 First citation in articleGoogle Scholar

  • Schellenberg, E. G. (2004). Music lessons enhance IQ. Psychological Science, 15(8), 511–514. https://doi.org/10.1111/j.0956-7976.2004.00711.x First citation in articleCrossrefGoogle Scholar

  • Schellenberg, E. G. (2006). Long-term positive associations between music lessons and IQ. Journal of Educational Psychology, 98(2), 457–468. https://doi.org/10.1037/0022-0663.98.2.457 First citation in articleCrossrefGoogle Scholar

  • Seither-Preisler, A., Parncutt, R., & Schneider, P. (2014). Size and synchronization of auditory cortex promotes musical, literacy, and attentional skills in children. The Journal of Neuroscience, 34(33), 10937–10949. https://doi.org/10.1523/JNEUROSCI.5315-13.2014 First citation in articleCrossrefGoogle Scholar

  • Suggate, S., & Stoeger, H. (2017). Fine motor skills enhance lexical processing of embodied vocabulary: A test of the nimble-hands, nimble-minds hypothesis. The Quarterly Journal of Experimental Psychology, 70(10), 2169–2187. https://doi.org/10.1080/17470218.2016.1227344 First citation in articleCrossrefGoogle Scholar

  • Wang, M. V., Lekhal, R., Aaro, L. E., Holte, A., & Schjolberg, S. (2014). The developmental relationship between language and motor performance from 3 to 5 years of age: A prospective longitudinal population study. BMC Psychology, 2(1), 34. https://doi.org/10.1186/s40359-014-0034-3 First citation in articleCrossrefGoogle Scholar

  • Wechsler, D. (2003). Wechsler Intelligence Scale for Children, 4th edition (WISC-IV®), The Psychological Corporation. First citation in articleGoogle Scholar

  • Wechsler, D. (2005). WISC-IV : Échelle d’intelligence de Wechsler pour enfants et adolescents [Wechsler Intelligence Scale for Children and Adolescents]. ECPA. First citation in articleGoogle Scholar

  • Winkler, I., Haden, G. P., Ladinig, O., Sziller, I., & Honing, H. (2009). Newborn infants detect the beat in music. Proceedings of the National Academy of Science USA, 106(7), 2468–2471. https://doi.org/0809035106[pii]10.1073/pnas.0809035106 First citation in articleCrossrefGoogle Scholar