Skip to main content

Willingness of Older Adults to Share Mobile Health Data with Researchers

Published Onlinehttps://doi.org/10.1024/1662-9647/a000181

Abstract. This study explored the use of wearable devices to track self-recorded health data and the willingness to share this data with researchers. Participants aged ≥ 50 years (n = 1,013) were interviewed in a representative telephone survey. Results indicated that 43.3% of all participants used one or more mobile devices (activity tracker, smartwatch, smartphone, or tablet), and that 27.6% used those devices for the purposes of recording health data. Additionally, 57.2% of the participants who tracked their health data were willing to share it with researchers. Income significantly contributed to predicting this willingness, whereas other independent variables were not significant predictors. This study indicates a relatively positive overall willingness to share self-recorded mobile health data with the science community.

References

  • Ajana, B. (2017). Digital health and the biopolitics of the Quantified Self. Digital Health, 3, 1–18. doi 10.1177/2055207616689509 First citation in articleCrossrefGoogle Scholar

  • Appelboom, G., Camacho, E., Abraham, M. E., Bruce, S. S., Dumont, E. L. P., Zacharia, B. E., ... Connolly, E. S. (2014). Smart wearable body sensors for patient self-assessment and monitoring. Archives of Public Health, 72, 28–37. doi 10.1186/2049-3258-72-28 First citation in articleCrossrefGoogle Scholar

  • Azmak, O., Bayer, H., Caplin, A., Chun, M., Glimcher, P., Koonin, S., ... Patrinos, A. (2015). Using big data to understand the human condition: The Kavli HUMAN project. Big Data, 3, 173–188. doi 10.1089/big.2015.0012 First citation in articleCrossrefGoogle Scholar

  • Batsis, J. A., Naslund, J. A., Gill, L. E., Masutani, R. K., Agarwal, N., & Bartels, S. J. (2016). Use of a wearable activity device in rural older obese adults: A pilot study. Gerontology and Geriatric Medicine, 2, 1–6. doi 10.1177/2333721416678076 First citation in articleCrossrefGoogle Scholar

  • Bietz, M. J., Bloss, C. S., Calvert, S., Godino, J. G., Gregory, J., Claffey, M. P., ... Patrick, K. (2015). Opportunities and challenges in the use of personal health data for health research. Journal of the American Medical Informatics Association, 23(e1), 42–48. doi 10.1093/jamia/ocv118 First citation in articleCrossrefGoogle Scholar

  • Chen, C., Haddad, D., Selsky, J., Hoffman, J. E., Kravitz, R. L., Estrin, D. E., ... Sim, I. (2012). Making sense of mobile health data: An open architecture to improve individual-and population-level health. Journal of Medical Internet Research, 14(4), 4–21. doi 10.2196/jmir.2152 First citation in articleCrossrefGoogle Scholar

  • Chen, J., Bauman, A., & Allman-Farinelli, M. (2016). A study to determine the most popular lifestyle smartphone applications and willingness of the public to share their personal data for health research. Telemedicine and e-Health, 22, 655–665. doi 10.1089/ tmj.2015.0159 First citation in articleCrossrefGoogle Scholar

  • Christen, M., Domingo-Ferrer, J., Herrmann, D., & van den Hoven, J. (2017). Beyond informed consent: Investigating ethical justifications for disclosing, donating or sharing personal data in research. In T. M. PowersEd., Philosophy and computing (pp. 193–207). Berlin: Springer. doi 10.1007/978-3-319-61043-6_10 First citation in articleGoogle Scholar

  • Czaja, S. J., Charness, N., Fisk, A. D., Hertzog, C., Nair, S. N., Rogers, W. A.m ... Sharit, J. (2006). Factors predicting the use of technology: Findings from the Center for Research and Education on Aging and Technology Enhancement (CREATE). Psychology and Aging, 21, 333–352. doi 10.1037/0882-7974.21.2.333 First citation in articleCrossrefGoogle Scholar

  • Dallinga, J. M., Mennes, M., Alpay, L., Bijwaard, H., & de la Faille-Deutekom, M. B. (2015). App use, physical activity and healthy lifestyle: A cross-sectional study. BMC Public Health, 15(1), 833–842. doi 10.1186/s12889-015-2165-8 First citation in articleCrossrefGoogle Scholar

  • Dobkin, B. H. (2013). Wearable motion sensors to continuously measure real-world physical activities. Current Opinion in Neurology, 26, 602–608. doi 10.1097/WCO.0000000000000026 First citation in articleCrossrefGoogle Scholar

  • Dobkin, B. H., & Dorsch, A. (2011). The promise of mHealth: Daily activity monitoring and outcome assessments by wearable sensors. Neurorehabilitation and Neural Repair, 25, 788–798. doi 10.1177/1545968311425908 First citation in articleCrossrefGoogle Scholar

  • Ernsting, C., Dombrowski, S. U., Oedekoven, M., & LO, J. (2017). Using smartphones and health apps to change and manage health behaviors: A population-based survey. Journal of Medical Internet Research, 19(4), e101–. doi 10.2196/jmir.6838 First citation in articleCrossrefGoogle Scholar

  • Festinger, L. (1962). A theory of cognitive dissonance. Stanford, CA: Stanford University Press. First citation in articleGoogle Scholar

  • Fogg, B. J. (2003). Persuasive technology: using computers to change what we think and do. Boston, MA: Morgan Kaufmann. First citation in articleCrossrefGoogle Scholar

  • Fox, S., & Duggan, M. (2013). Tracking for health. Retrieved from http://www.pewinternet.org/files/old-media//Files/Reports/2013/PIP_TrackingforHealth%20with%20appendix.pdf First citation in articleGoogle Scholar

  • Fuller, D., Shareck, M., & Stanley, K. (2017). Ethical implications of location and accelerometer measurement in health research studies with mobile sensing devices. Social Science and Medicine, 191, 84–88. doi 10.1016/j.socscimed.2017.08.043 First citation in articleCrossrefGoogle Scholar

  • Gerstorf, D., Hoppmann, C. A., & Ram, N. (2014). The promise and challenges of integrating multiple time-scales in adult developmental inquiry. Research in Human Development, 11, 75–90. doi 10.1080/15427609.2014.906725 First citation in articleCrossrefGoogle Scholar

  • Gilleard, C., Jones, I., & Higgs, P. (2015). Connectivity in later life: The declining age divide in mobile cell phone ownership. Sociological Research Online, 20(2), 1–13. doi 0.5153/sro.3552 First citation in articleCrossrefGoogle Scholar

  • Gruenenfelder-Steiger, A. E., Katana, M., Martin, A. A., Aschwanden, D., Koska, J. L., Kündig, Y., ... Allemand, M. (2017). Physical activity and depressive mood in the daily life of older adults. GeroPsych, 30, 119–129. doi 10.1024/1662-9647/a000172 First citation in articleLinkGoogle Scholar

  • Hamaker, E. L. (2012). Why researchers should think “within-person”: A paradigmatic rationale. In M. R. MehlT. S. ConnerEds., Handbook of research methods for studying daily life (pp. 43–61). New York: Guilford. First citation in articleGoogle Scholar

  • Higgins, J. P. (2016). Smartphone applications for patients’ health and fitness. The American Journal of Medicine, 129(1), 11–19. doi 10.1016/j.amjmed.2015.05.038 First citation in articleCrossrefGoogle Scholar

  • Hingle, M., & Patrick, H. (2016). There are thousands of apps for that: Navigating mobile technology for nutrition education and behavior. Journal of Nutrition Education and Behavior, 48, 213–218. doi 10.1016/j.jneb.2015.12.009 First citation in articleCrossrefGoogle Scholar

  • Kamin, S. T., & Lang, F. R. (2013). The subjective technology adaptivity inventory (STAI): A motivational measure of technology usage in old age. Gerontechnology, 12(1), 16–25. doi 10.4017/ gt.2013.12.1.008.00 First citation in articleCrossrefGoogle Scholar

  • Lamonaca, F., Polimeni, G., Barbé, K., & Grimaldi, D. (2015). Health parameters monitoring by smartphone for quality of life improvement. Measurement, 73, 82–94. doi 10.1016/j.measurement.2015.04.017 First citation in articleCrossrefGoogle Scholar

  • Landi, F., Onder, G., Carpenter, I., Cesari, M., Soldato, M., & Bernabei, R. (2007). Physical activity prevented functional decline among frail community-living elderly subjects in an international observational study. Journal of Clinical Epidemiology, 60, 518–524. doi 10.1016/j.jclinepi.2006.09.010 First citation in articleCrossrefGoogle Scholar

  • Lindwall, M., Cimino, C. R., Gibbons, L. E., Mitchell, M. B., Benitez, A., Brown, C. L., ... Piccinin, A. M. (2012). Dynamic associations of change in physical activity and change in cognitive function: Coordinated analyses of four longitudinal studies. Journal of Aging Research, 2012, 1–12. Article ID 493598, doi 10.1155/2012/493598 First citation in articleCrossrefGoogle Scholar

  • Martin, M. (2017). Big health data combined with small health data: A framework for a personal health data bank. Innovation in Aging, 1(suppl_1), 1313. doi 10.1093/geroni/igx004.4812 First citation in articleCrossrefGoogle Scholar

  • McMahon, S. K., Lewis, B., Oakes, M., Guan, W., Wyman, J. F., & Rothman, A. J. (2016). Older adults’ experiences using a commercially available monitor to self-track their physical activity. JMIR mHealth and uHealth, 4(2). doi 10.2196/mhealth.5120 First citation in articleCrossrefGoogle Scholar

  • Mercer, K., Giangregorio, L., Schneider, E., Chilana, P., Li, M., & Grindrod, K. (2016). Acceptance of commercially available wearable activity trackers among adults aged over 50 and with chronic illness: A mixed-methods evaluation. JMIR mHealth and uHealth, 4(1), e7. doi 10.2196/mhealth.4225 First citation in articleCrossrefGoogle Scholar

  • Nissenbaum, H. (2004). Privacy as contextual integrity. Washington Law Review, 79, 119–157. First citation in articleGoogle Scholar

  • O’Brien, T., Troutman-Jordan, M., Hathaway, D., Armstrong, S., & Moore, M. (2015). Acceptability of wristband activity trackers among community dwelling older adults. Geriatric Nursing, 36(2), 21–25. doi 10.1016/j.gerinurse.2015.02.019 First citation in articleCrossrefGoogle Scholar

  • Peel, N. M., McClure, R. J., & Bartlett, H. P. (2005). Behavioral determinants of healthy aging. American Journal of Preventive Medicine, 28, 298–304. doi 10.1016/j.amepre.2004.12.002 First citation in articleCrossrefGoogle Scholar

  • Pevnick, J. M., Fuller, G., Duncan, R., & Spiegel, B. M. R. (2016). A large-scale initiative inviting patients to share personal fitness tracker data with their providers: Initial results. PloS one, 11, e0165908. doi 10.1371/journal.pone.0165908 First citation in articleCrossrefGoogle Scholar

  • Prasad, A., Sorber, J., Stablein, T., Anthony, D., & Kotz, D. (2014). Understanding user privacy preferences for mhealth data sharing. In S. AdibiEd., mHealth: Multidisciplinary verticals (pp. 545–569). Boca Raton, LA: CRC Pres. First citation in articleGoogle Scholar

  • Preusse, K. C., Mitzner, T. L., Fausset, C. B., & Rogers, W. A. (2017). Older adults’ acceptance of activity trackers. Journal of Applied Gerontology, 36, 127–155. doi 10.1177/0733464815624151 First citation in articleCrossrefGoogle Scholar

  • Rogers, E. M. (2010). Diffusion of innovations. New York: Simon and Schuster. First citation in articleGoogle Scholar

  • Röcke, C., Li, S.-C., & Smith, J. (2009). Intraindividual variability in positive and negative affect over 45 days: Do older adults fluctuate less than young adults. Psychology and Aging, 24, 863–878. doi 0.1037/a0016276 First citation in articleCrossrefGoogle Scholar

  • Schlomann, A. (2017). A case study on older adults’ long-term use of an activity tracker. Gerontechnology, 16, 115–124. doi 10.4017/gt.2017.16.2.007.00 First citation in articleCrossrefGoogle Scholar

  • Schulz, R., Wahl, H.-W., Matthews, J. T., De Vito Dabbs, A., Beach, S. R., & Czaja, S. J. (2015). Advancing the aging and technology agenda in gerontology. The Gerontologist, 55, 724–734. doi 10.1093/geront/gnu071 First citation in articleCrossrefGoogle Scholar

  • Seifert, A., & Schelling, H. R. (2015). Mobile use of the Internet using smartphones or tablets by Swiss people over 65 years. Gerontechnology, 14, 57–62. doi 10.4017/gt.2015.14.1.006.00 First citation in articleCrossrefGoogle Scholar

  • Seifert, A., & Schelling, H. R. (2016). Seniors online: Attitudes toward the internet and coping with everyday life. Journal of Applied Gerontology (Epub ahead of print). doi 10.1177/0733464816669805 First citation in articleGoogle Scholar

  • Shull, P. B., Jirattigalachote, W., Hunt, M. A., Cutkosky, M. R., & Delp, S. L. (2014). Quantified self and human movement: A review on the clinical impact of wearable sensing and feedback for gait analysis and intervention. Gait and Posture, 40(1), 11–19. doi 10.1016/j.gaitpost.2014.03.189 First citation in articleCrossrefGoogle Scholar

  • Steinert, A., Haesner, M., & Steinhagen-Thiessen, E. (2017). Activity-tracking devices for older adults: Comparison and preferences. Universal Access in the Information Society, 2017, 1–9. doi 10.1007/s10209-017-0539-7 First citation in articleGoogle Scholar

  • Sula, C. A. (2016). Research Ethics in an Age of Big Data. Bulletin of the Association for Information Science and Technology, 42(2), 17–21. doi 10.1002/bul2.2016.1720420207 First citation in articleCrossrefGoogle Scholar

  • Swan, M. (2012). Sensor mania! The internet of things, wearable computing, objective metrics, and the quantified self 2.0. Journal of Sensor and Actuator Networks, 1, 217–253. doi 10.3390/ jsan1030217 First citation in articleCrossrefGoogle Scholar

  • Swan, M. (2013). The quantified self: Fundamental disruption in big data science and biological discovery. Big Data, 1, 85–99. doi 10.1089/big.2012.0002 First citation in articleCrossrefGoogle Scholar

  • Swiss Academy of Medical Sciences (2017). Model of general consent. Retrieved from Http://www.samw.ch/de/ethik/forschungsethik/vorlage-gk.html First citation in articleGoogle Scholar

  • Taylor, L. (2016). No place to hide? The ethics and analytics of tracking mobility using mobile phone data. Environment and Planning D: Society and Space, 34, 319–336. doi 10.1177/0263775815608851 First citation in articleCrossrefGoogle Scholar

  • Vandelanotte, C., Müller, A. M., Short, C. E., Hingle, M., Nathan, N., Williams, S. L., ... Maher, C. A. (2016). Past, present, and future of eHealth and mHealth research to improve physical activity and dietary behaviors. Journal of Nutrition Education and Behavior, 48, 219–228. doi 10.1016/j.jneb.2015.12.006 First citation in articleCrossrefGoogle Scholar

  • Vashist, S. K., Schneider, E. M., & Luong, J. H. T. (2014). Commercial smartphone-based devices and smart applications for personalized healthcare monitoring and management. Diagnostics, 4, 104–128. doi 10.3390/diagnostics4030104 First citation in articleCrossrefGoogle Scholar

  • WHO. (2015). World report on ageing and health. Geneva: Author. First citation in articleGoogle Scholar