Skip to main content
Published Online:https://doi.org/10.1026/0033-3042/a000423

Zusammenfassung. Die Kognitionspsychologische Grundlagenforschung zur Handlungskontrolle hat inzwischen eine große Zahl sehr spezifischer Aspekte von Handlungen in diversen Experimentalparadigmen isoliert und beleuchtet, sodass der gegenwärtige Forschungsstand durch eine kaum übersehbare Flut unverbundener Phänomene und paradigmen-spezifischer Modellvorstellungen gekennzeichnet ist. In dem hier vorgeschlagenen Rahmenmodell (Binding and Retrieval in Action Control, BRAC) werden die für Handlungen wichtigsten Prozesse paradigmen-übergreifend beschrieben, systematisch eingeordnet und in ein Rahmenmodell transferiert, bei dem Merkmalsintegration und Merkmalsabruf als wichtige Mechanismen der Handlungssteuerung dienen. Wir zeigen exemplarisch auf, wie das Rahmenmodell etablierte, aber bislang unabhängig voneinander untersuchte Phänomene der Handlungs-Forschung mithilfe derselben Mechanismen erklärt. Dieses Modell birgt neben seiner Ordnungs- und Integrationsfunktion die Möglichkeit, Phänomen auch aus anderen Forschungskontexten in der Sprache des Modells zu reformulieren. Das Modell soll Wissen aus der Kognitionsforschung bzw. Allgemeinen Psychologie innovativ kondensieren und anderen Disziplinen zur Verfügung stellen.


Feature Integration and Retrieval in Action Control – A Perspective Across Paradigmas

Abstract. Cognitive psychology research on action control has investigated actions in experimental paradigms that tried to isolate specific aspects of these actions. The result is an abundance of paradigm-specific results and models. Here we propose an overarching perspective summarizing the paradigm-specific results in a framework (binding and retrieval in action control; BRAC) that is mainly based on the mechanisms that emerged as important mechanisms of action control in previous research, namely, binding and retrieval. We then use this approach to explain established effects from the realm of action control. The BRAC framework structures the experimental literature on action control but it can also be extended to research areas of psychology, and effects in these research areas can be reformulated within this framework at a microprocess level. The BRAC framework condenses the results of action control from cognitive psychology and allows for the transfer of this condensed knowledge to other areas of psychology.

Literatur

  • Ach, N. (1910/2006). On volition (Über den Willen). Leipzig: Verlag von Quelle & Meyer. First citation in articleGoogle Scholar

  • Allport, A. (1987). Selection for action: Some behavioral and neurophysiological consider-ations of attention and action. In H. HeuerA. F. Sanders (Eds.), Perspectives on perception and action (pp. 395 – 419). Hillsdale, NJ: Lawrence Erlbaum Associates. First citation in articleGoogle Scholar

  • Blask, K., Frings, C. & Walther, E. (2016). Doing is for feeling. Journal of Experimental Psychology: General, 145, 1263 – 1268. First citation in articleCrossrefGoogle Scholar

  • Blaxton, T. A. (1989). Dissociations among memory measures in memory-impaired subjects: Evidence for a processing account of memory. Memory & Cognition, 20, 549 – 562. First citation in articleCrossrefGoogle Scholar

  • Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S. & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624 – 652. First citation in articleCrossrefGoogle Scholar

  • Colzato, L. S., Raffone, A. & Hommel, B. (2006). What do we learn from binding features? Evidence for multilevel feature integration. Journal of Experimental Psychology: Human Perception and Performance, 32, 705 – 716. First citation in articleCrossrefGoogle Scholar

  • Dam, W. O. van & Hommel, B. (2010). How object-specific are object files? Evidence for integration by location. Journal of Experimental Psychology. Human Perception and Performance, 36, 1184 – 1192. First citation in articleCrossrefGoogle Scholar

  • D’Angelo, M. C., Thomson, D. R., Tipper, S. P. & Milliken, B. (2016). Negative priming 1985 to 2015: A measure of inhibition, the emergence of alternative accounts, and the multiple process challenge. The Quarterly Journal of Experimental Psychology, 69, 1890 – 1909. First citation in articleCrossrefGoogle Scholar

  • Davelaar, E. J. & Stevens, J. (2009). Sequential dependencies in the Eriksen flanker task: A direct comparison of two competing accounts. Psychonomic Bulletin & Review, 16, 121 – 126. First citation in articleCrossrefGoogle Scholar

  • Eder, A. B., Elliot, A. & Harmon-Jones, J. (2013). Approach and avoidance motivation: Issues and Advances. Emotion Review, 5, 227 – 229. First citation in articleCrossrefGoogle Scholar

  • Eder, A. B., Pfister, R., Dignath, D. & Hommel, B. (2017). Anticipatory affect during action preparation: Evidence from backward compatibility in dual-task performance. Cognition & Emotion, 31, 1211 – 1224. First citation in articleCrossrefGoogle Scholar

  • Eder, A. B. & Rothermund, K. (2013). Emotional action: An ideomotor model. In C. MohiyeddinM. EysenckS. Bauer (Eds.), Handbook of psychology of emotions: Recent theoretical perspectives and novel empirical findings (Vol. 1, pp. 11 – 38). Hauppauge, NY: Nova Science Publishers. First citation in articleGoogle Scholar

  • Engelkamp, J. & Cohen, R. L. (1991). Current issues in memory of action events. Psychological Research, 53, 175 – 182. First citation in articleCrossrefGoogle Scholar

  • Engelkamp, J. & Zimmer, H. (1989). Memory for action events: a new field of research. Psychological Research, 51, 153 – 157. First citation in articleCrossrefGoogle Scholar

  • Eriksen, B. A. & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16, 143 – 149. First citation in articleCrossrefGoogle Scholar

  • Frings, C. (2011). On the decay of distractor-response episodes. Experimental Psychology, 58, 125 – 131. First citation in articleLinkGoogle Scholar

  • Frings, C., Moeller, B. & Horner, A. (2015). On the durability of bindings between responses and response-irrelevant stimuli. Acta Psychologica, 161, 73 – 78. First citation in articleCrossrefGoogle Scholar

  • Frings, C., Rothermund, K. & Wentura, D. (2007). Distractor repetitions retrieve previous responses to targets. The Quarterly Journal of Experimental Psychology, 60, 1367 – 1377. First citation in articleCrossrefGoogle Scholar

  • Frings, C. & Rothermund, K. (2011). To be or not to be…included in an event file: Integration and retrieval of distractors in stimulus-response episodes is influenced by perceptual grouping. Journal of Experimental Psychology: Learning, Memory & Cognition, 37, 1209 – 1227. First citation in articleCrossrefGoogle Scholar

  • Frings, C. & Rothermund, K. (2017). How perception guides action: Figure-ground segmentation modulates integration of context features into S-R episodes. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43, 1720 – 1729. First citation in articleCrossrefGoogle Scholar

  • Frings, C., Schneider, K. K. & Fox, E. (2015). The Negative Priming Paradigm – An update and implications for selective attention. Psychonomic Bulletin & Review, 22, 1577 – 1597. First citation in articleCrossrefGoogle Scholar

  • Gast, A. & Rothermund, K. (2011). I like it because I said that I like it. Evaluative conditioning effects can be based on stimulus-response learning. Journal of Experimental Psychology: Animal Behavior Processes, 37, 466 – 476. First citation in articleCrossrefGoogle Scholar

  • Gegenfurtner, K., Bremmer, F., Fiehler, K., Henriques, D. & Krauzlis, R. (2010). Vision Research special issue on „Perception and action“. Vision Research, 50, 2617. First citation in articleGoogle Scholar

  • Gegenfurtner, K., Henriques, D. & Krauzlis, R. (2011). Recent advances in perception and action. Vision Research, 51, 801 – 803. First citation in articleCrossrefGoogle Scholar

  • Giesen, C., Frings, C. & Rothermund, K. (2012). Differences in the strength of distractor inhibition do not affect distractor–response bindings. Memory & Cognition, 40, 373 – 387. First citation in articleCrossrefGoogle Scholar

  • Giesen, C., Herrmann, J. & Rothermund, K. (2014). Copying competitors? Interdependency modulates stimulus-based retrieval of observed responses. Journal of Experimental Psychology: Human Perception and Performance, 40, 1978 – 1991. First citation in articleCrossrefGoogle Scholar

  • Giesen, C., Scherdin, K. & Rothermund, K. (2017). Flexible goal imitation: Vicarious feedback influences stimulus-response binding by observation. Learning & Behavior, 45, 147 – 156. First citation in articleCrossrefGoogle Scholar

  • Gratton, G., Coles, M. G. & Donchin, E. (1992). Optimizing the use of information: strategic control of activation of responses. Journal of Experimental Psychology: General, 121, 480 – 506. First citation in articleCrossrefGoogle Scholar

  • Greenwald, A. (1970). Sensory feedback mechanism in performance control: with special reference to the ideo-motor mechanism. Psychological Review, 77, 73 – 99. First citation in articleCrossrefGoogle Scholar

  • Harleß, E. (1861). Der Apparat des Willens. Zeitschrift für Philosophie und philosophische Kritik, 38, 50 – 73. First citation in articleGoogle Scholar

  • Heckhausen, H. & Gollwitzer, P. M. (1987). Thought contents and cognitive functioning in motivational versus volitional states of mind. Motivation and Emotion, 11, 101 – 120. First citation in articleCrossrefGoogle Scholar

  • Henson, R. N., Eckstein, D., Waszak, F., Frings, C. & Horner, A. J. (2014). Stimulus-response bindings in priming. Trends in Cognitive Sciences, 18, 376 – 384. First citation in articleCrossrefGoogle Scholar

  • Hoffmann, J. (1993). Vorhersage und Erkenntnis: Die Funktion von Antizipationen in der menschlichen Verhaltenssteuerung und Wahrnehmung. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Hommel, B. (1998). Event files: Evidence for automatic integration of stimulus-response episodes. Visual Cognition, 5, 183 – 216. First citation in articleCrossrefGoogle Scholar

  • Hommel, B. (2004). Event files: Feature binding in and across perception and action. Trends in Cognitive Sciences, 8, 494 – 500. First citation in articleCrossrefGoogle Scholar

  • Hommel, B. (2005). How much attention does an event file need? Journal of Experimental Psychology: Human Perception and Performance, 31, 1067 – 1082. First citation in articleCrossrefGoogle Scholar

  • Hommel, B. (2016). Embodied cognition according to TEC. In Y. CoelloM. Fischer (Eds.), Foundations of embodied cognition, Volume 1: Perceptual and emotional embodiment (pp. 75 – 92). New York: Psychology Press. First citation in articleGoogle Scholar

  • Hommel, B., Lippelt, D. P., Gurbuz, E. & Pfister, R. (2017). Contributions of expected sensory and affective action effects to action selection and performance: evidence from forced- and free-choice tasks. Psychonomic Bulletin & Review, 24, 821 – 827. First citation in articleCrossrefGoogle Scholar

  • Hommel, B., Memelink, J., Zmigrod, S. & Colzato, L.S. (2014). Attentional control of the creation and retrieval of stimulus-response bindings. Psychological Research, 78, 520 – 538. First citation in articleCrossrefGoogle Scholar

  • Hommel, B., Müsseler, J., Aschersleben, G. & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849 – 878. First citation in articleCrossrefGoogle Scholar

  • Hommel, B., Proctor, R. W. & Vu, K.-P. L. (2004). A feature-integration account of sequential effects in the Simon task. Psychological Research, 68, 1 – 17. First citation in articleCrossrefGoogle Scholar

  • Hommel, B. & Wiers, R. W. (2017). Towards a unitary approach to human action control. Trends in Cognitive Sciences, 21, 940 – 949. First citation in articleCrossrefGoogle Scholar

  • Horner, A. J. & Henson, R. N. (2009). Bindings between stimuli and multiple response codes dominate long-lag repetition priming in speeded classification tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 757 – 779. First citation in articleCrossrefGoogle Scholar

  • Ihrke, M., Behrendt, J., Schrobsdorff, H., Herrmann, J. & Hasselhorn, M. (2011). Response-retrieval and negative priming – Encoding- and retrieval-specific effects. Experimental Psychology, 58, 154 – 161. First citation in articleLinkGoogle Scholar

  • James, W. (1890). The principles of psychology (Vol. 2). New York: Dover Publications. First citation in articleCrossrefGoogle Scholar

  • Janczyk, M. & Kunde, W. (2010). Stimulus-response bindings contribute to item switch costs in working memory. Psychological Research, 74, 370 – 377. First citation in articleCrossrefGoogle Scholar

  • Janczyk, M. (2016). Die Rolle von Handlungszielen bei der Entstehung von Doppelaufgaben-kosten. Psychologische Rundschau, 67, 237 – 249. First citation in articleLinkGoogle Scholar

  • Kahneman, D. (2011). Thinking, fast and slow. New York: Farrar, Straus and Giroux. First citation in articleGoogle Scholar

  • Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A. M. & Koch, I. (2010). Control and interference in task switching- A review. Psychological Bulletin, 136, 849 – 874. First citation in articleCrossrefGoogle Scholar

  • Koch, I., Frings, C. & Schuch, S. (2017). Explaining response-repetition effects in task switching: evidence from switching cue modality suggests episodic binding and response inhibition. Psychological Research, Advance online publication https://doi.org/10.1007/s00426-017-0847-9 First citation in articleGoogle Scholar

  • Koch, I. & Kunde, W. (2002). Verbal response-effect compatibility. Memory & Cognition, 30, 1297 – 1303. First citation in articleCrossrefGoogle Scholar

  • Koch, I., Poljac, E., Müller, H. & Kiesel, A. (2018). Cognitive structure, flexibility, and plasticity in human multitasking – An integrative review of dual-task and task-switching research. Psychological Bulletin, 144, 557 – 583. https://doi.org/10.1037/bul0000144 First citation in articleCrossrefGoogle Scholar

  • Kunde, W., Hoffmann, J. & Zellmann, P. (2002). The impact of anticipated action effects on action planning. Acta Psychologica, 109, 137 – 155. First citation in articleCrossrefGoogle Scholar

  • Kunde, W. (2006). Antezedente Effektrepräsentationen in der Verhaltenssteuerung. Psychologische Rundschau, 57, 34 – 42. First citation in articleLinkGoogle Scholar

  • Laub, R., Frings, C. & Moeller, B. (2018). Dissecting Stimulus-Response Binding Effects: Grouping By Color Separately Impacts Integration And Retrieval Processes. Attention, Perception, & Psychophysic, 80, 1474 – 1488. https://doi.org/10.3758/s13414-018-1526-7 First citation in articleCrossrefGoogle Scholar

  • Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95, 492 – 527. First citation in articleCrossrefGoogle Scholar

  • Logan, G. D. (1990). Repetition priming and automaticity: Common underlying mechanisms? Cognitive Psychology, 22, 1 – 35. First citation in articleCrossrefGoogle Scholar

  • Mayr, S. & Buchner, A. (2006). Prime retrieval of motor responses in negative priming. Journal of Experimental Psychology: Human Perception and Performance, 35, 408 – 423. First citation in articleCrossrefGoogle Scholar

  • Mayr, U., Awh, E. & Laurey, P. (2003). Conflict adaptation effects in the absence of executive control. Nature Neuroscience, 6, 450 – 452. First citation in articleCrossrefGoogle Scholar

  • Miller, J. (1987). Priming is not necessary for selective-attention fail-ures: Semantic effects of unattended, unprimed letters. Perception & Psychophysics, 41, 419 – 434. First citation in articleCrossrefGoogle Scholar

  • Moeller, B. & Frings, C. (2014). Attention meets binding: Only attended distractors are used for the retrieval of event files. Attention, Perception, & Psychophysics, 76, 959 – 978. First citation in articleCrossrefGoogle Scholar

  • Moeller, B. & Frings, C. (2017). Overlearned responses hinder S-R binding. Journal of Experimental Psychology: Human Perception and Performance, 43, 1 – 5. First citation in articleCrossrefGoogle Scholar

  • Moscovitch, M. (1994). Memory and working with memory: Evaluation of a component process model and comparisons with other models. In D. L. SchacteE. Tulving (Eds.), Memory systems, 1994 (pp. 269 – 310). Cambridge, MA: MIT Press. First citation in articleGoogle Scholar

  • Müller, H. J., Heller, D. & Ziegler, J. (1995). Visual search for singleton feature targets within and across feature dimensions. Perception & Psychophysics, 57, 1 – 17. First citation in articleCrossrefGoogle Scholar

  • Müller, H. J., Töllner, T., Zehetlleitner, M., Geyer, T., Rangelov, D. & Krummenacher, J. (2010). Dimension-based attention modulates feed-forward visual processing. Acta Psychologica, 135, 117 – 122. First citation in articleCrossrefGoogle Scholar

  • Nett, N., Bröder, A. & Frings, C. (2015). When irrelevance matters: Stimulus-response binding in decision making under uncertainty. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41, 1831 – 1848. First citation in articleCrossrefGoogle Scholar

  • Nett, N., Bröder, A. & Frings, C. (2016). Distractor-based stimulus-response bindings retrieve decisions independent of motor programs. Acta Psychologica, 171, 57 – 64. First citation in articleCrossrefGoogle Scholar

  • Neumann, O. (1990). Visual attention and action. In O. NeumannW. Prinz (Eds.), Relationships between perception and action: Current approaches (pp. 227 – 267). Berlin: Springer. First citation in articleGoogle Scholar

  • Norman, D. & Shallice, T. (1986). Attention to action: willed and automatic control of behavior. In R. DavidsoR. SchwartzD. Shapiro (Eds.), Consciousness and Self-Regulation: Advances in Research and Theory IV. New York: Springer. First citation in articleGoogle Scholar

  • Northoff, G. (2016). Is the self a higher-order or fundamental function of the brain? The “basis model of self-specificity” and its encoding by the brain’s spontaneous activity. Cognitive Neuroscience, 7, 203 – 222. First citation in articleCrossrefGoogle Scholar

  • Pfeuffer, C. U., Moutsopoulou, K., Pfister, R., Waszak, F. & Kiesel, A. (2017). The Power of Words: On item-specific stimulus-response associations formed in the absence of action. Journal of Experimental Psychology: Human Perception and Performance, 43, 328 – 347. First citation in articleCrossrefGoogle Scholar

  • Postman, L. (1962). Rewards and punishments in human learning. In L. Postman (Ed.), Psychology in the making: Histories of selected research problems (pp. 331 – 401). New York, NY: Knopf. First citation in articleGoogle Scholar

  • Prinz, W. (1998). Die Reaktion als Willenshandlung. Psychologische Rundschau, 49, 10 – 20. First citation in articleGoogle Scholar

  • Prinz, W. (1990). A common coding approach to perception and action. In O. NeumannW. Prinz (Eds.), Relationships between perception and action: Current approaches (pp. 167 – 201). Berlin, New York: Springer. First citation in articleGoogle Scholar

  • Roediger, H. L. & McDermott, K. B. (1993). Implicit memory in normal human subjects. In F. BollerJ. Grafman (Eds.), Handbook of neuropsychology (Vol. 8, pp. 63 – 131). Amsterdam: Elsevier. First citation in articleGoogle Scholar

  • Roediger, L., III, Buckner, L., R. & McDermott, K. B. (1999). Components of processing. In J. K. FosterM. Jelicic (Eds.), Debates in psychology. Memory: Systems, process, or function? (pp. 31 – 65). New York, NY, US: Oxford University Press. First citation in articleGoogle Scholar

  • Rogers, R. D. & Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124, 207 – 231. First citation in articleCrossrefGoogle Scholar

  • Rothermund, K., Wentura, D. & De Houwer, J. (2005). Retrieval of incidental stimulus-response associations as a source of negative priming. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 482 – 495. First citation in articleCrossrefGoogle Scholar

  • Schmidt, J. R., De Houwer, J. & Rothermund, K. (2016). The Parallel Episodic Processing (PEP) model 2.0: A single computational model of stimulus-response binding, contingency learning, power curves, and mixing costs. Cognitive Psychology, 91, 82 – 108. First citation in articleCrossrefGoogle Scholar

  • Singh, T., Moeller, B. & Frings, C. (2016). Five shades of grey: Generalization in distractor-based retrieval of SR episodes. Attention, Perception & Psychophysics, 78, 2307 – 2312. First citation in articleCrossrefGoogle Scholar

  • Singh, T., Frings, C. & Moeller, B. (2017). Binding Abstract Concepts. Psychological Research, Advance online publication https://doi.org/10.1007/s00426-017-0897-z First citation in articleGoogle Scholar

  • Squire, L. R. (1987). Memory and brain. Oxford University Press. First citation in articleGoogle Scholar

  • Stoet, G. & Hommel, B. (1999). Action planning and the temporal binding of response codes. Journal of Experimental Psychology: Human Perception and Performance, 25, 1625 – 1640. First citation in articleCrossrefGoogle Scholar

  • Strack, F. & Deutsch, R. (2004). Reflective and impulsive determinants of social behavior. Personality and Social Psychology Review, 8, 220 – 247. First citation in articleCrossrefGoogle Scholar

  • Tipper, S. P. (1985). The negative priming effect: Inhibitory priming by ignored objects. The Quarterly Journal of Experimental Psychology, 37, 571 – 590. First citation in articleCrossrefGoogle Scholar

  • Tipper, S. P. (2001). Does negative priming reflect inhibitory mechanisms? A review and integration of conflicting views. The Quarterly Journal of Experimental Psychology, 54, 321 – 343. First citation in articleCrossrefGoogle Scholar

  • Treisman, A. M. & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97 – 136. First citation in articleCrossrefGoogle Scholar

  • Verguts, T. & Notebaert, W. (2008). Hebbian learning of cognitive control: dealing with specific and nonspecific adaption. Psychological Review, 2, 518 – 525. First citation in articleCrossrefGoogle Scholar

  • Wühr, P. & Frings, C. (2008). A Case for Inhibition: Visual Attention Suppresses the Processing of Irrelevant Objects. Journal of Experimental Psychology: General, 137, 116 – 130. First citation in articleCrossrefGoogle Scholar