Skip to main content
Übersicht

Die Bedeutung fötaler und neonataler Motorik für die kindliche Entwicklung und die Früherkennung von Entwicklungsstörungen

Published Online:https://doi.org/10.1026/0942-5403/a000323

Zusammenfassung.Theoretischer Hintergrund: Die von Central Pattern Generators (CPGs) generierten Bewegungen des Neugeborenen und jungen Säuglings haben eine lange pränatale Vorgeschichte. Fragestellung: Welche Bedeutung hat die Analyse der CPG-Aktivität, besonders der General Movements (GMs) in der entwicklungsneurologischen Diagnostik? Methode: Unsere Übersichtsarbeit bezieht sich auf Prechtl’s General Movement Assessment (GMA), das ab dem Frühgeborenenalter bis zum Ende des 5. Monats nach einer Termingeburt anwendbar ist. Ergebnisse: Das GMA ermöglicht die Vorhersage einer Zerebralparese mit einer Sensitivität von 98 % und einer Spezifität von 91 %. Abnormale cramped-synchronized GMs sind ein früher Marker für spastische Zerebralparesen. Das Fehlen von Fidgety Movements (im 3.–5. Monat) weist auf alle Formen der Zerebralparese hin und kann auch bei bestimmten genetischen Erkrankungen auftreten. Zwei von drei Säuglingen mit einer späteren Diagnose Autismus haben atypische GMs und fallen vor allem durch ihre Monotonie in den Bewegungen auf. Diskussion und Schlussfolgerung: Mittels GMA lassen sich mit großer Treffsicherheit typische Entwicklungsverläufe vorhersagen oder aber ein Risiko für einen atypischen Verlauf erkennen und somit frühzeitige Interventionen einleiten.


The Significance of Fetal and Neonatal Spontaneous Movements for Development and Early Identification of Developmental Disorders‍‍

Abstract.Theoretical Background: The human neonate presents a continuum of motor patterns extending from prenatal to early postnatal life. Independent of any external and sensory input, central pattern generators (CPGs) engender a variety of distinct spontaneous movements from the 8‍‍‍‍‍‍‍‍‍th week postmenstrual age onward. These gradually emerging patterns in the fetus include side-to-side movements of the head, startles, breathing movements, hiccupping, stretching, yawning, sucking, swallowing, eye movements, blinking, smiling, as well as the isolated head, arm, or leg movements. Among the rich repertoire of early spontaneous movement patterns, the general movements (GMs) appear most frequently and are more complex. GMs involve the entire body. They are variable flows of elegant and smooth arm, leg, neck, and trunk movements, evidencing the integrity of the developing nervous system. Around the 3rd month postterm age, a distinct transformation occurs. GMs appear as fidgety movements (FMs), referring to the continuous small-amplitude movements of shoulders, wrists, hips, and ankles in all directions and of variable accelerations. FMs gradually fade out after 5 months of age, when voluntary movements become dominant. Objective: This review aims to examine the significance of CPG-generated GMs in neurodevelopmental diagnostics. Method: We summarize the clinical research on the Prechtl general movements assessment (GMA), a diagnostic tool applicable from preterm to 5 months of age. Results: The existing studies revealed that the presence of normal, variable GMs is indicative of typical brain development in general, whereas atypical, monotonous GMs, especially the absence of FMs, is highly suggestive of an adverse neurological development. GMA enables the prediction of cerebral palsy with remarkable sensitivity (98 %; 95 % CI [74, 100]) and specificity (91 %; 95 % CI [83, 93]). In particular, the abnormal cramped-synchronized GMs at perinatal age and the absence of FMs at 3 – 5 months are reliable markers for cerebral palsy. Not only infants with an early brain injury, but also infants with various genetic disorders (e. g., Rett syndrome, Down syndrome, Smith–Magenis syndrome) might not develop FMs. Additionally, the quality of GMs is related to the cognitive outcomes of infants born preterm. GMA has recently been extended to the field of autism spectrum disorders (ASD). Two thirds of infants with a later diagnosis of ASD display atypical GMs and are notable for their monotony in movements. Discussion and Conclusion: GMA has repeatedly proven to be a sensitive readout of the integrity of the developing brain. Especially in regions of limited resources, GMA is highly beneficial in providing a cost-effective and reliable neurodevelopmental diagnosis. GMA plays a critical part in identifying infants with neurological impairments in the very first months of life where early targeted interventions are most efficient and effective.

Literatur

  • AboEllail, M. A. M., Kanenishi, K., Mori, N., Mohamed, O. A. K. & Hata, T. (2018). 4D ultrasound study of fetal facial expressions in the third trimester of pregnancy. Journal of Maternal, Fetal and Neonatal Medicine, 31, 1856 – 1864. First citation in articleCrossrefGoogle Scholar

  • Ahlfeld, J. F. (1869). Beobachtungen über die Dauer der Schwangerschaft. Monatsschrift für Geburtshilfe und Gynäkologie, 19, 155 – 165. First citation in articleGoogle Scholar

  • Ahlfeld, J. F. (1888). Über bisher noch nicht beschriebene intrauterine Bewegungen des Kindes. Verhandlungen der Deutschen Gesellschaft für Gynäkologie, 2, 203 – 210. First citation in articleGoogle Scholar

  • Bhutta, A. T., Cleves, M. A., Casey, P. H., Cradock, M. M. & Anand, K. J. S. (2002). Cognitive and behavioural outcomes of school-aged children who were born preterm: A meta-analysis. Journal of the American Medical Association, 288, 728 – 737. First citation in articleCrossrefGoogle Scholar

  • Birnholz, J. C. (1981). The development of human fetal eye movement patterns. Science, 222, 516 – 518. First citation in articleCrossrefGoogle Scholar

  • Bosanquet, M., Copeland, L., Ware, R. & Boyd, R. (2013). A systematic review of tests to predict cerebral palsy in young children. Developmental Medicine & Child Neurology, 55, 418 – 426. First citation in articleCrossrefGoogle Scholar

  • Cioni, G., Bos, A. F., Einspieler, C., Ferrari, F., Martijn, A., Paolicelli, P. B. et al. (2000). Early neurological signs in preterm infants with unilateral intraparenchymal echodensity. Neuropediatrics, 31, 240 – 251. First citation in articleCrossrefGoogle Scholar

  • de Vries, J. I., Visser., G. H. & Prechtl, H. F. R. (1982). The emergence of fetal behaviour. I. Qualitative aspects. Early Human Development, 7, 301 – 322. First citation in articleCrossrefGoogle Scholar

  • Einspieler, C. & Marschik, P. B. (2012). Central pattern generators und ihre Bedeutung für die fötale Motorik. Klinische Neurophysiologie, 43, 16 – 21. First citation in articleCrossrefGoogle Scholar

  • Einspieler, C. & Prechtl, H. F. R. (2005). Prechtl’s assessment of general movements: A diagnostic tool for the functional assessment of the young nervous system. Mental Retardation & Developmental Disabilities Research Reviews, 11, 61 – 67. First citation in articleCrossrefGoogle Scholar

  • Einspieler, C. & Marschik, P. B. (2019). Regression in Rett syndrome: Developmental pathways to its onset. Neuroscience & Biobehavioral Reviews, 98, 320 – 332. First citation in articleCrossrefGoogle Scholar

  • Einspieler, C., Cioni, G., Paolicelli, P. B., Bos, A.F., Dressler, A., Ferrari, F. et al. (2002). The early markers for later dyskinetic cerebral palsy are different from those for spastic cerebral palsy. Neuropediatrics, 33, 73 – 78. First citation in articleCrossrefGoogle Scholar

  • Einspieler, C., Prechtl, H. F. R., Bos, A. F., Ferrari, F. & Cioni, G. (2004). Prechtl’s Method on the Qualitative Assessment of General Movements in Preterm, Term and Young Infants. London: Mac Keith Press. First citation in articleGoogle Scholar

  • Einspieler, C., Kerr, A. M. & Prechtl, H. F. R. (2005a). Abnormal general movements in girls with Rett disorder: The first four months of life. Brain & Development, 27, 8 – 13. First citation in articleCrossrefGoogle Scholar

  • Einspieler, C., Kerr, A. M. & Prechtl, H. F. R. (2005b). Is the early development of girls with Rett disorder really normal? Pediatric Research, 57, 696 – 700. First citation in articleCrossrefGoogle Scholar

  • Einspieler, C., Marschik, P. B. & Prechtl, H. F. R. (2008). Human motor behaviour. Prenatal origin and early postnatal development. Zeitschrift für Psychologie, 216, 148 – 154. First citation in articleLinkGoogle Scholar

  • Einspieler, C., Hirota, H., Yuge, M., Dejima, S. & Marschik, P. B. (2012a). Early behavioural manifestation of Smith-Magenis syndrome (del 17p11.2) in a 4-month-old boy. Developmental Neurorehabilitation, 15, 313 – 316. First citation in articleCrossrefGoogle Scholar

  • Einspieler, C., Prayer, D. & Prechtl, H. F. R. (2012b). Fetal Behaviour: A Neurodevelopmental Approach. London: Mac Keith Press. First citation in articleGoogle Scholar

  • Einspieler, C., Sigafoos, J., Bartl-Pokorny, K. D., Landa, R., Marschik, P. B. & Bölte, S. (2014). Highlighting the first 5 months of life: General movements in infants later diagnosed with autism spectrum disorder or Rett syndrome. Research in Autism Spectrum Disorders, 8, 286 – 291. First citation in articleCrossrefGoogle Scholar

  • Einspieler, C., Yang, H., Bartl-Pokorny, K. D., Chi, X., Zang, F. F., Marschik, P. B. et al. (2015). Are sporadic fidgety movements as clinically relevant as is their absence? Early Human Development, 91, 247 – 252. First citation in articleCrossrefGoogle Scholar

  • Einspieler, C., Bos, A. F., Libertus, M. E. & Marschik, P. B. (2016a). The general movement assessment helps us to identify preterm infants at risk for cognitive dysfunction. Frontiers in Psychology, 7, 406. First citation in articleGoogle Scholar

  • Einspieler, C., Freilinger, M. & Marschik, P. B. (2016b). Behavioural biomarkers of typical Rett syndrome: Moving towards early identification. Wiener Medizinische Wochenschrift, 66, 333 – 337. First citation in articleCrossrefGoogle Scholar

  • Einspieler, C., Marschik, P. B., Pansy, J., Scheuchenegger, A., Krieber, M., Yang, H. et al. (2016c). The general movement optimality score: A detailed assessment of general movements during preterm and term age. Developmental Medicine & Child Neurology, 58, 361 – 368. First citation in articleCrossrefGoogle Scholar

  • Einspieler, C., Peharz, R. & Marschik, P. B. (2016d). Fidgety movements – Tiny in appearance, but huge in impact. Journal of Pediatrics (Rio de Janeiro), 92, S64 – S70. First citation in articleCrossrefGoogle Scholar

  • Einspieler, C., Bos, A. F., Krieber-Tomantschger, M., Alvarado, E., Barbosa, V. M., Bertoncelli, N. et al. (2019). Cerebral palsy: Early markers of clinical phenotype and functional outcome. Journal of Clinical Medicine, 8., E1616. First citation in articleCrossrefGoogle Scholar

  • Eyre, J. A., Taylor, J. P., Villagra, F., Smith, M. & Miller, S. (2001). Evidence of activity-dependent withdrawal of corticospinal projections during human development. Neurology, 57, 1543 – 1554. First citation in articleCrossrefGoogle Scholar

  • Ferrari, F., Prechtl, H. F. R., Cioni, G., Roversi, M. F., Einspieler, C., Gallo, C. et al. (1997). Cavazzuti GB. Posture, spontaneous movements, and behavioural state organisation in infants affected by brain malformations. Early Human Development, 24, 87 – 113. First citation in articleCrossrefGoogle Scholar

  • Ferrari, F., Cioni, G., Einspieler, C., Roversi, M. F., Bos, A. F., Paolicelli, P. B. et al. (2002). Cramped synchronized general movements in preterm infants as an early marker for cerebral palsy. Archives of Pediatrics & Adolescent Medicine, 156, 460 – 467. First citation in articleCrossrefGoogle Scholar

  • Ferrari, F., Todeschini, A., Guidotti, I., Martinez-Biarge, M., Roversi, M. F., Berardi, A. et al. (2011). General movements in full-term infants with perinatal asphyxia are related to Basal Ganglia and thalamic lesions. Journal of Pediatrics, 158, 904 – 911. First citation in articleCrossrefGoogle Scholar

  • Ferrari, F., Frassoldati, R., Berardi, A., Di Palma, F., Ori, L., Lucaccioni, L. et al. (2016). The ontogeny of fidgety movements from 4 to 20 weeks post-term age in healthy full-term infants. Early Human Development, 103, 219 – 224. First citation in articleCrossrefGoogle Scholar

  • Grillner, S. (2006). Biological pattern generation: The cellular and computational logic of networks in motion. Neuron, 52, 751 – 766. First citation in articleCrossrefGoogle Scholar

  • Guzzetta, A., Mercuri, E., Rapisardi, G., Ferrari, F., Roversi, M. F., Cowan, F. et al. (2003). General movements detect early signs of hemiplegia in term infants with neonatal cerebral infarction. Neuropediatrics, 34, 61 – 66. First citation in articleCrossrefGoogle Scholar

  • Hadders-Algra, M. (2001). Evaluation of motor function in young infants by means of the assessment of general movements: A review. Pediatric Physical Therapy, 13, 27 – 36. First citation in articleCrossrefGoogle Scholar

  • Harris, P. F., Bagnali, K. M., Mahon, M. & Scott, E. M. (1977). Fetal hiccups and fetal movements. The Lancet, 310, 560 – 561. First citation in articleCrossrefGoogle Scholar

  • Herrero, D., Einspieler, C., Panvequio Aizawa, C. Y., Mutlu, A., Yang, H., Nogolová, A. et al. (2017). The motor repertoire in 3- to 5-month old infants with Down syndrome. Research in Developmental Disabilities, 67, 1 – 8. First citation in articleCrossrefGoogle Scholar

  • Hooker, D. (1952). The Prenatal Origin of Behavior. Lawrence, KS: University of Kansas Press. First citation in articleGoogle Scholar

  • Inanlou, M. R., Baguma-Nibasheka, M. & Kablar, B. (2005). The role of fetal breathing-like movements in lung organogenesis. Histology and Histopathology, 20, 1261 – 1266. First citation in articleGoogle Scholar

  • Iwayama, K. & Eishima, M. (1997). Neonatal sucking behaviour and its development until 14 months. Early Human Development, 47, 1 – 9. First citation in articleCrossrefGoogle Scholar

  • Johnson, S. (2007). Cognitive and behavioural outcomes following very preterm birth. Seminars in Fetal and Neonatal Medicine, 12, 363 – 373. First citation in articleCrossrefGoogle Scholar

  • Jouppila, P. & Piiroinen, O. (1975). Ultrasonic diagnosis of fetal life in early pregnancy. Obstetrics and Gynecology, 46, 616 – 620. First citation in articleGoogle Scholar

  • Lüchinger, A. B., Hadders-Algra, M., van Kann, C. M. & de Vries, J. I. (2008). Fetal onset of general movements. Pediatric Research, 63, 191 – 195. First citation in articleCrossrefGoogle Scholar

  • Marschik, P. M., Pini, G., Bartl-Pokorny, K. D., Duckworth, M., Gugatschka, M., Vollmann, R. et al. (2012). Early speech–language development in females with Rett syndrome: Focusing on the preserved speech variant. Developmental Medicine & Child Neurology, 54, 451 – 456. First citation in articleCrossrefGoogle Scholar

  • Marschik, P. B., Kaufmann, W. E., Sigafoos, J., Wolin, T., Zhang, D., Bartl-Pkorny, K. D. et al. (2013a). Changing the perspective on early development of Rett syndrome. Research in Developmental Disabilities, 34, 1236 – 1239. First citation in articleCrossrefGoogle Scholar

  • Marschik, P. B., Prechtl, H. F. R., Prayer, D., Peyton, C. & Einspieler, C. (2013b). An antecedent of later developing communicative functions: The fetal index finger. British Medical Journal, 347, 232. First citation in articleGoogle Scholar

  • Marschik, P. B., Soloveichick, M., Windpassinger, C. & Einspieler, C. (2013c). General movements in genetic disorders: A first look into Cornelia de Lange syndrome. Developmental Neurorehabilitation, 18, 280 – 282. First citation in articleCrossrefGoogle Scholar

  • Marschik, P. B., Pokorny, F. B., Peharz, R., Zhang, D., O’Muircheartaigh, J., Roeyers, H. et al. (2017a). A novel way to measure and predict development: A heuristic approach to facilitate the early detection of neurodevelopmental disorders. Current Neurology and Neuroscience Reports, 17, 43. First citation in articleGoogle Scholar

  • Marschik, P. B., Zhang, D., Esposito, G., Bölte, S., Einspieler, C. & Sigafoos, J. (2017b). Same or different: Common pathways of behavioral biomarkers in infants and children with neurodevelopmental disorders? Behavioral and Brain Sciences, 40., e64. First citation in articleCrossrefGoogle Scholar

  • Mazzone, L., Mugno, D. & Mazzone, D. (2004). The general movements in children with Down syndrome. Early Human Development, 79, 119 – 130. First citation in articleCrossrefGoogle Scholar

  • Mulder, E. J., Visser, G. H., Morssink, L. P. & de Vries, J. L. (1991). Growth and motor development in fetuses of women with type-1 diabetes. III. First trimester quantity of fetal movement patterns. Early Human Development, 25, 117 – 133. First citation in articleCrossrefGoogle Scholar

  • Needham, J. (1959). History of Embryology. Cambridge: Cambridge University Press. First citation in articleGoogle Scholar

  • Neul, J. F., Kaufmann, W. E., Glaze, D. G., Christodoulou, J., Clarke, A. J., Bahi-Buisson, N. et al. (2010). Rett syndrome: Revised diagnostic criteria and nomenclature. Annals of Neurology, 68, 944 – 950. First citation in articleCrossrefGoogle Scholar

  • Novak, I., Morgan, C., Adde, L., Blackman, J., Boyd, R. N., Brunstrom-Hernandez, J. et al. (2017). Early, accurate diagnosis and early intervention in cerebral palsy: Advances in diagnosis and treatment. JAMA Pediatrics, 171, 897 – 907. First citation in articleCrossrefGoogle Scholar

  • O’Dowd, M. J. & O’Dowd, T. M. (1985). Quickening – A re-evaluation. British Journal of Obstetrics and Gynaecology, 92, 1037 – 19039. First citation in articleCrossrefGoogle Scholar

  • Okado, N. (1981). Onset of synapse formation in the human spinal cord. Journal of Computational Neurology, 201, 211 – 219. First citation in articleCrossrefGoogle Scholar

  • Pansy, J., Barones, C., Urlesberger, B., Pokorny, F. B., Bartl-Pokorny, K. D., Verheyen, S. et al. (2019). Early motor and pre-linguistic verbal development in Prader-Willi syndrome – A case report. Research in Developmental Disabilities, 88, 16 – 21. First citation in articleCrossrefGoogle Scholar

  • Peyton, C. & Einspieler, C. (2018). General movements: A behavioral biomarker of later motor and cognitive dysfunction in NICU graduates. Pediatric Annals, 47, e159 – e164. First citation in articleCrossrefGoogle Scholar

  • Peyton, C., Yang, E., Msall, M. E., Adde, L., Støen, R., Fjørtoft, T. et al. (2017). White matter injury and general movements in high-risk preterm infants. American Journal of Neuroradiology, 38, 162 – 169. First citation in articleCrossrefGoogle Scholar

  • Peyton, C., Einspieler, C., Fjørtoft, T., Adde, L., Schreiber, M. D., Drobyshevsky, A. et al. (2020). Correlates of normal and abnormal general movements in infancy and long-term neurodevelopment of preterm infants: Insights from functional connectivity studies at term equivalence. Journal of Clinical Medicine, 19, 9. First citation in articleGoogle Scholar

  • Phagava, H., Muratori, F., Einspieler, C., Maestro, S., Apicella, F., Guzzetta, A. et al. (2008). General movements in infants with autism spectrum disorders. Georgian Medical News, 156, 100 – 105. First citation in articleGoogle Scholar

  • Prechtl, H. F. R. (1984). Continuity of neural functions from prenatal to postnatal life. Oxford: Blackwell Scientific Publications. First citation in articleGoogle Scholar

  • Prechtl, H. F. R. & Einspieler, C. (1997). Is neurological assessment of the fetus possible? European Journal of Obstetrics, Gynecology and Reproductive Biology, 75, 81 – 84. First citation in articleCrossrefGoogle Scholar

  • Prechtl, H. F. R., Einspieler, C., Cioni, G., Bos, A. F., Ferrari, F. & Sontheimer, D. (1997). An early marker for neurological deficits after perinatal brain lesions. The Lancet, 349, 1361 – 1363. First citation in articleCrossrefGoogle Scholar

  • Roche, L., Zhang, D., Bartl-Pokorny, K. D., Pokorny, F. B., Schuller, B. W., Esposito, G. et al. (2018). Early vocal development in autism spectrum disorder, Rett syndrome, and fragile X syndrome: Insights from studies using retrospective video analysis. Advances in Neurodevelopmental Disorders, 2, 49 – 61. First citation in articleCrossrefGoogle Scholar

  • Spittle, A. J., Brown, N. C., Doyle, L. W., Boyd, R. N., Hunt, R. W., Bear, M. et al. (2008). Quality of general movements is related to white matter pathology in very preterm infants. Pediatrics, 121, e1184 – e1189. First citation in articleCrossrefGoogle Scholar

  • Spittle, A. J., Doyle, L. W., Anderson, P. J., Inder, T. E., Lee, K. J., Boyd, R. N. et al. (2010). Reduced cerebellar diameter in very preterm infants with abnormal general movements. Early Human Development, 86, 1 – 5. First citation in articleCrossrefGoogle Scholar

  • Tomantschger, I., Herrero, D., Einspieler, C., Hamamura, C., Voos, M. C. & Marschik, P. B. (2018). The general movement assessment in non-European low- and middle-income countries. Revista de Saúde Pública, 52, 6. First citation in articleGoogle Scholar

  • Visser, G. H., Laurini, R. N., de Vries, J. I., Bekedam, D. J. & Prechtl, H. F. R. (1985). Abnormal motor behaviour in anencephalic fetuses. Early Human Development, 12, 173 – 182. First citation in articleCrossrefGoogle Scholar

  • Wigglesworth, J.S. (1988). Lung development in the second trimester. British Medical Bulletin, 44, 894 – 908. First citation in articleCrossrefGoogle Scholar

  • Yuge, M., Marschik, P. B., Nakajima, Y., Yamori, Y., Kanda, T., Hirota, H. et al. (2011). Movements and postures of infants aged 3 to 5 months: to what extent is their optimality related to perinatal events and to the neurological outcome? Early Human Development, 87, 231 – 237. First citation in articleCrossrefGoogle Scholar

  • Zappella, M., Einspieler, C., Bartl-Pokorny, K. D., Krieber, M., Coleman, M., Bölte S. et al. (2015). What do home videos tell us about early motor and socio-communicative behaviours in children with autistic features during the second year of life–An exploratory study. Early Human Development, 91, 569 – 575. First citation in articleCrossrefGoogle Scholar