Skip to main content
Published Online:https://doi.org/10.1026/1612-5010.12.1.11

Zusammenfassung. In der vorliegenden Trainingsstudie wurde der Effekt imaginierter Muskelkontraktionen (IMC-Training) auf die isometrische Maximalkraft (MVC) untersucht. In der Literatur finden sich hierzu teils widersprüchliche Befunde (Herbert, Dean & Gandevia, 1998; Yue & Cole, 1992. Im Rahmen eines vierwöchigen kontrollierten Trainingsprogramms trainierten Versuchspersonen (N = 34) die Kraftübung Bankdrücken entweder physisch (Gruppe “MaxKraft“, n = 12), d. h. mit maximalen isometrischen Kontraktionen oder indem sie die entsprechenden Kontraktionen so lebhaft als möglich imaginierten (Gruppe “Mental“, n = 11). Die Kontrollgruppe (n = 11) hatte kein Training. Vor, während (nach 7 bzw. 14 Tagen) und am Ende der Trainingsphase wurde die Relativkraft (MVC relativiert am Körpergewicht) erfasst. Im Gegensatz zur Kontrollgruppe verzeichnet die mental übende Gruppe einen signifikanten Kraftgewinn (5.7 %; p < .001). Der stärkste Vorstellungseffekt findet sich dabei zu Beginn der Trainingsphase (η2 = .58). Der Kraftanstieg in Folge eines IMC-Trainings wird als Verbesserung der muskulären Aktivierung und somit als Anpassung der zentralen Programmierung interpretiert. Die Kraftgewinne der physisch übenden Gruppe (14.1 %) werden allerdings nicht erreicht.


Strength gains by motor imagery of maximal muscle contractions

Abstract. The purpose of this training study was to determine the effect of imagined muscle contraction training (IMC training) on maximal voluntary contraction force (MVC). Concerning this issue, conflicting findings have been reported (Herbert, Dean & Gandevia, 1998; Yue & Cole, 1992. Within a supervised four-week training program, subjects (N = 34) exercised bilateral bench pressing either by performing maximal isometric contractions (contraction group, n = 12) or by vividly imagining maximal isometric contractions (mental training group, n = 11). Subjects in the control group (n = 11) did not practice. Relative strength (MVC relative to body weight) was measured before, during (after 7 and 14 days), and at the end of the training period. In contrast to the control group, the mental training group significantly increased relative strength (5.7 %; p < .001). The strongest imagery effect (η2 = .58) was found after the first week. Strength increases were interpreted as enhancement of the neuromuscular activation and therefore as being caused centrally. Strength gains from IMC training do not lead to the same improvements as physical practice (14.1 %).

References

  • Akima, H. , Takahashi, H. , Kuno, S. Y. , Masuda, K. , Masuda, T. , Shimojo, H. , Anno, I. , Itai, Y. , Katsuta, S. (1999). Early phase adaptations of muscle use and strength to isokinetic training. Medicine and Science in Sports and Exercise, 31, 588– 594 First citation in articleCrossrefGoogle Scholar

  • Bortz, J. , Döring, N. (1995). Forschungsmethoden und Evaluation . Berlin: Springer First citation in articleCrossrefGoogle Scholar

  • Chilibeck, P. D. , Calder, A. W. , Sale, D. G. , Webber, C. E. (1998). A comparison of strength and muscle mass during resistance training in young women. European Journal of Applied Physiology, 77, 170– 175 First citation in articleCrossrefGoogle Scholar

  • Crammond, D. J. (1997). Motor imagery: never in your wildest dream. Trends in Neuroscience, 20, 54– 57 First citation in articleCrossrefGoogle Scholar

  • Dai, T. H. , Liu, J. Z. , Sahgal, V. , Brown, R. W. , Yue, G. H. (2001). Relationship between muscle output and functional MRI-measured brain activation. Experimental Brain Research, 140, 290– 300 First citation in articleCrossrefGoogle Scholar

  • Deschenes, M. R. , Giles, J. A. , McCoy, R. W. , Volek, J. S. , Gomez, A. L. , Kraemer, W. J. (2002). Neural factors account for strength decrements observed after short-term muscle unloading. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 282, R578– R583 First citation in articleGoogle Scholar

  • Driskell, J. E. , Copper, C. , Moran, A. (1994). Does mental practice enhance performance?. Journal of Applied Psychology, 79, 481– 492 First citation in articleCrossrefGoogle Scholar

  • Enoka, R. M. (1997). Neural adaptations with chronic physical activity. Journal of Biomechanics, 30, 447– 455 First citation in articleCrossrefGoogle Scholar

  • Feltz, D. L. , Landers, D. M. (1983). The effects of mental practice on motor skill learning and performance: A meta-analysis. Journal of Sportpsychology, 5, 25– 57 First citation in articleGoogle Scholar

  • Féry, Y.-A. (2003). Differentiating visual and kinesthetic imagery in mental practice. Canadian Journal of Experimental Psychology, 57, 1– 10 First citation in articleCrossrefGoogle Scholar

  • Féry, Y.-A. , Morizot, P. (2000). Kinesthetic and visual image in modeling closed motor skills: the example of the tennis serve. Perceptual and Motor Skills, 90, 707– 722 First citation in articleCrossrefGoogle Scholar

  • Gandevia, S. , Wilson, L. R. , Inglis, J. T. , Burke, D. (1997). Mental rehearsal of motor tasks recruits alpha-motoneurones but fails to recruit human fusimotor neurones selectively. Journal of Physiology, 505, 259– 266 First citation in articleCrossrefGoogle Scholar

  • Güllich, A. , Schmidtbleicher, D. (1999). Struktur der Kraftfähigkeiten und ihrer Trainingsmethoden. Deutsche Zeitschrift für Sportmedizin, 50, 223– 234 First citation in articleGoogle Scholar

  • Hall, C. R. , Martin, K. E. (1997). Measuring movement imagery abilities: a revision of the Movement Imagery Questionnaire. Journal of Mental Imagery, 21, 143– 154 First citation in articleGoogle Scholar

  • Herbert, D. , Dean, C. , Gandevia, S. C. (1998). Effects of real and imagined training on voluntary muscle activation during maximal isometric contractions. Acta Physiologica Scandinavica, 163, 361– 369 First citation in articleCrossrefGoogle Scholar

  • Heuer, H. (1985). Wie wirkt mentale Übung?. Psychologische Rundschau, 36, 191– 200 First citation in articleGoogle Scholar

  • Jacobson, E. (1931). Electrical measurement of neuromuscular states during mental activities. American Journal of Physiology, 96, 115– 121 First citation in articleCrossrefGoogle Scholar

  • Jeannerod, M. (1994). The representing brain: neural correlates of motor intention and imagery. Behavioral and Brain Science, 17, 187– 245 First citation in articleCrossrefGoogle Scholar

  • Jeannerod, M. (2001). Neural simulation of action: A unifying mechanism for motor cognition. NeuroImage, 14, 103– 109 First citation in articleCrossrefGoogle Scholar

  • Kroemer, K. H. E. , Marras, W. S. (1980). Towards an objective assessment of the “maximal voluntary contraction“ component in routine muscle strength measurements. European Journal of Applied Physiology, 45, 1– 9 First citation in articleCrossrefGoogle Scholar

  • Li, S. , Latash, M. L. , Zatsiorsky, V. M. (2004). Effects of motor imagery on finger force responses to transcranial magnetic stimulation. Cognitive Brain Research, 20, 273– 280 First citation in articleCrossrefGoogle Scholar

  • Lotze, M. , Montoya, P. , Erb, M. , Hülsmann, E. , Flor, H. , Klose, U. , Birbaumer, N. , Grodd, W. (1999). Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. Journal of Cognitive Neuroscience, 11, 491– 501 First citation in articleCrossrefGoogle Scholar

  • Newsom, J. , Knight, P. , Balnave, R. (2003). Use of mental imagery to limit strength loss after immobilization. Journal of Sport Rehabilitation, 12, 249– 258 First citation in articleCrossrefGoogle Scholar

  • Phillips, S. M. (2000). When do repeated bouts of resistance exercise become training?. Canadian Journal of Applied Physiology, 25, 185– 193 First citation in articleCrossrefGoogle Scholar

  • Porro, C. A. , Francescato, M. P. , Cettolo, V. , Diamond, M. E. , Baraldi, P. , Zuiani, C. , Bazzocchi, M. , Prampero, P. E. (1996). Primary motor and sensory cortex activation during motor performance and motor imagery: a functional magnetic resonance imaging study. The Journal of Neuroscience, 16, 7688– 7698 First citation in articleCrossrefGoogle Scholar

  • Ranganathan, V. K. , Kuykendall, T. , Siemionow, V. , Yue, G. H. (2002). Level of mental effort determines training-induced strength increases. Society for Neuroscience, Abstracts, 32, 768.3– First citation in articleGoogle Scholar

  • Ranganathan, V. K. , Siemionow, V. , Liu, J. Z. , Sahgal, V. , Yue, G. H. (2004). From mental power to muscle power - gaining strength by using the mind. Neuropsychologia, 42, 944– 956 First citation in articleCrossrefGoogle Scholar

  • Romero, D. H. , Lacourse, M. G. , Lawrence, K. R. , Schandler, S. , Cohen, M. J. (2000). Event-related potentials as a function of movement parameter variations during motor imagery and isometric action. Behavioural Brain Research, 117, 83– 96 First citation in articleCrossrefGoogle Scholar

  • Sale, D. G. (1992). Neural adaptations to strength training. In P. V. Komi (Ed.), Strength and power in sport (pp. 248-265). Oxford: Blackwell Scientific Publications First citation in articleGoogle Scholar

  • Saltin, B. , Gollnick, P. D. (1983). Skeletal muscle adaptability: significance for metabolism and performance. In S. R. Geiger (Ed.), Skeletal muscle. Handbook of physiology (pp. 555-631). Bethesda, MD: American Physiological Society First citation in articleGoogle Scholar

  • Schlicht, W. (1992). Mentales Training: Lern- und Leistungsgewinne durch Imagination?. Sportpsychologie, 6(2), 24– 29 First citation in articleGoogle Scholar

  • Schnitzler, A. , Salenius, S. , Salmelin, R. , Jousmäki, V. , Hari, R. (1997). Involvement of primary motor cortex in motor imagery: A neuromagnetic study. Neuro-Image, 6, 201– 208 First citation in articleCrossrefGoogle Scholar

  • Shima, N. , Ishida, K. , Morotome, K. , Sato, Y. , Miyaramura, M. (2002). Cross education of muscular strength during unilateral resistance training and detraining. European Journal of Applied Physiology, 86, 287– 294 First citation in articleCrossrefGoogle Scholar

  • Siemionow, V. , Yue, G. H. , Ranganathan, V. K. , Liu, J. Z. , Sahgal, V. (2000). Relationship between motor activity-related cortical potential and voluntary muscle activation. Experimental Brain Research, 133, 303– 311 First citation in articleCrossrefGoogle Scholar

  • Smith, D. , Collins, D. , Holmes, P. (2003). Impact and mechanism of mental practice effects on strength. International Journal of Sport and Exercise Psychology, 1, 293– 306 First citation in articleCrossrefGoogle Scholar

  • Yue, G. , Cole, K. J. (1992). Strength increases from the motor program: comparison of training with maximal voluntary and imagined muscle contractions. Journal of Neurophysiology, 67, 1114– 1123 First citation in articleCrossrefGoogle Scholar

  • Zatsiorsky, V. M. (2000). Krafttraining - Praxis und Wissenschaft . Aachen: Meyer & Meyer First citation in articleGoogle Scholar

  • Zijdewind, I. , Toering, S. T. , Bessem, B. , Laan, O. van der , Diercks, R. L. (2003). Effects of imagery motor training on torque production of ankle plantar flexor muscles. Muscle Nerve, 28, 168– 173 First citation in articleCrossrefGoogle Scholar