Skip to main content
Research Trends

Toward Automatic Risk Assessment to Support Suicide Prevention

Published Online:https://doi.org/10.1027/0227-5910/a000561

Abstract.Background: Suicide has been considered an important public health issue for years and is one of the main causes of death worldwide. Despite prevention strategies being applied, the rate of suicide has not changed substantially over the past decades. Suicide risk has proven extremely difficult to assess for medical specialists, and traditional methodologies deployed have been ineffective. Advances in machine learning make it possible to attempt to predict suicide with the analysis of relevant data aiming to inform clinical practice. Aims: We aimed to (a) test our artificial intelligence based, referral-centric methodology in the context of the National Health Service (NHS), (b) determine whether statistically relevant results can be derived from data related to previous suicides, and (c) develop ideas for various exploitation strategies. Method: The analysis used data of patients who died by suicide in the period 2013–2016 including both structured data and free-text medical notes, necessitating the deployment of state-of-the-art machine learning and text mining methods. Limitations: Sample size is a limiting factor for this study, along with the absence of non-suicide cases. Specific analytical solutions were adopted for addressing both issues. Results and Conclusion: The results of this pilot study indicate that machine learning shows promise for predicting within a specified period which people are most at risk of taking their own life at the time of referral to a mental health service.

References

  • Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python: Analyzing text with the natural language toolkit. Sebastopol, CA: O'Reilly Media. First citation in articleGoogle Scholar

  • Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022. 10.1162/jmlr.2003.3.4-5.993 First citation in articleCrossrefGoogle Scholar

  • Borboudakis, G., Stergiannakos, T., Frysali, M., Klontzas, E., Tsamardinos, I., & Froudakis, G. E. (2017). Chemically intuited, large-scale screening of MOFs by machine learning techniques. npj Computational Materials, 3(1), 40. 10.1038/s41524-017-0045-8 First citation in articleCrossrefGoogle Scholar

  • Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory (pp. 144–152). New York, NY: ACM. 10.1145/130385.130401 First citation in articleCrossrefGoogle Scholar

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. 10.1023/A:1010933404324 First citation in articleCrossrefGoogle Scholar

  • Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. Boca Raton, FL: CRC press. First citation in articleGoogle Scholar

  • Carter, G., Milner, A., McGill, K., Pirkis, J., Kapur, N., & Spittal, M. J. (2017). Predicting suicidal behaviours using clinical instruments: Systematic review and meta-analysis of positive predictive values for risk scales. The British Journal of Psychiatry, 210(6), 387–395. 10.1192/bjp.bp.116.182717 First citation in articleCrossref MedlineGoogle Scholar

  • Chan, M. K., Bhatti, H., Meader, N., Stockton, S., Evans, J., O'Connor, R. C., … Kendall, T. (2016). Predicting suicide following self-harm: systematic review of risk factors and risk scales. The British Journal of Psychiatry, 209(4), 277–283. 10.1192/bjp.bp.115.170050 First citation in articleCrossref MedlineGoogle Scholar

  • Chapman, C. L., Mullin, K., Ryan, C. J., Kuffel, A., Nielssen, O., & Large, M. M. (2015). Meta-analysis of the association between suicidal ideation and later suicide among patients with either a schizophrenia spectrum psychosis or a mood disorder. Acta Psychiatrica Scandinavica, 131(3), 162–173. 10.1111/acps.12359 First citation in articleCrossref MedlineGoogle Scholar

  • DeLong, E. R., DeLong, D. M., & Clarke-Pearson, D. L. (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics, 837–845. 10.2307/2531595 First citation in articleCrossref MedlineGoogle Scholar

  • Department of Health. (2012). Suicide prevention: Resources and guidance and mental health service reform. Retrieved from https://www.gov.uk/government/publications/suicide-prevention-strategy-for-england First citation in articleGoogle Scholar

  • Hawgood, J., & De Leo, D. (2016). Suicide prediction – a shift in paradigm is needed. Crisis, 37(4), 251–255. ​10.1027/0227-5910/a000440 First citation in articleLinkGoogle Scholar

  • He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on knowledge and data engineering, 21(9), 1263–1284. 10.1109/TKDE.2008.239 First citation in articleCrossrefGoogle Scholar

  • Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55–67. 10.1080/00401706.1970.10488635 First citation in articleCrossrefGoogle Scholar

  • House of Commons Health Committee. (2017). Suicide prevention: sixth report of session (HC 2016-17 1087). Retrieved from https://publications.parliament.uk/pa/cm201617/cmselect/cmhealth/1087/1087.pdf First citation in articleGoogle Scholar

  • Huang, J., & Ling, C. X. (2005). Using AUC and accuracy in evaluating learning algorithms. IEEE Transactions on Knowledge and Data Engineering, 17(3), 299–310. 10.1109/TKDE.2005.50 First citation in articleCrossrefGoogle Scholar

  • Hubers, A. A. M., Moaddine, S., Peersmann, S. H. M., Stijnen, T., van Duijn, E., Van der Mast, R. C., … Giltay, E. J. (2016). Suicidal ideation and subsequent completed suicide in both psychiatric and non-psychiatric populations: A meta-analysis. Epidemiology and Psychiatric Sciences, 1–13. 10.1017/S2045796016001049 First citation in articleCrossrefGoogle Scholar

  • Kessler, R. C., Warner, L. C. H., Ivany, L. C., Petukhova, M. V., Rose, S., Bromet, E. J., … Fullerton, C. S. (2015). Predicting US Army suicides after hospitalizations with psychiatric diagnoses in the Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS). JAMA Psychiatry, 72(1), 49–57. 10.1001/jamapsychiatry.2014.1754 First citation in articleCrossref MedlineGoogle Scholar

  • Lagani, V., Athineou, G., Farcomeni, A., Tsagris, M., & Tsamardinos, I. (2016). Feature selection with the R package MXM: Discovering statistically-equivalent feature subsets. Journal of Statistical Software, 80(7), 1–25. 10.18637/jss.v080.i07 First citation in articleCrossrefGoogle Scholar

  • Large, M., Kaneson, M., Myles, N., Myles, H., Gunaratne, P., & Ryan, C. (2016). Meta-analysis of longitudinal cohort studies of suicide risk assessment among psychiatric patients: Heterogeneity in results and lack of improvement over time. PloS one, 11(6), e0156322. 10.1371/journal.pone.0156322 First citation in articleCrossref MedlineGoogle Scholar

  • LeFevre, M. L. (2014). Screening for suicide risk in adolescents, adults, and older adults in primary care: U.S. Preventive Services Task Force recommendation statement. Annals of Internal Medicine, 160(10), 719–726. 10.7326/M14-0589 First citation in articleCrossref MedlineGoogle Scholar

  • Milner, A., Witt, K., Pirkis, J., Hetrick, S., Robinson, J., Currier, D., … Carter, G. L. (2017). The effectiveness of suicide prevention delivered by GPs: A systematic review and meta-analysis. Journal of Affective Disorders, 210, 294–302. 10.1016/j.jad.2016.12.035 First citation in articleCrossref MedlineGoogle Scholar

  • O'Connor, E., Gaynes, B. N., Burda, B. U., Soh, C., & Whitlock, E. P. (2013). Screening for and treatment of suicide risk relevant to primary care: A systematic review for the U.S. Preventive Services Task Force. Annals of Internal Medicine, 158(10), 741–754. 10.7326/0003-4819-158-10-201305210-00642 First citation in articleCrossref MedlineGoogle Scholar

  • Oliven, J. F. (1954). Suicide prevention as a public health problem. American Journal of Public Health and the Nations Health, 44(11), 1419–1425. 10.2105/AJPH.44.11.1419 First citation in articleCrossref MedlineGoogle Scholar

  • Orfanoudaki, G., Markaki, M., Chatzi, K., Tsamardinos, I., & Economou, A. (2017). MatureP: Prediction of secreted proteins with exclusive information from their mature regions. Scientific Reports, 7(1), 3263. 10.1038/s41598-017-03557-4 First citation in articleCrossref MedlineGoogle Scholar

  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., … Vanderplas, J. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830. First citation in articleGoogle Scholar

  • Poulin, C., Shiner, B., Thompson, P., Vepstas, L., Young-Xu, Y., Goertzel, B., … McAllister, T. (2014). Predicting the risk of suicide by analyzing the text of clinical notes. PloS one, 9(1), e85733. 10.1371/journal.pone.0085733 First citation in articleCrossref MedlineGoogle Scholar

  • Ribeiro, J. D., Franklin, J. C., Fox, K. R., Bentley, K. H., Kleiman, E. M., Chang, B. P., & Nock, M. K. (2016). Self-injurious thoughts and behaviors as risk factors for future suicide ideation, attempts, and death: A meta-analysis of longitudinal studies. Psychological Medicine, 46(2), 225–236. 10.1017/S00​33291715001804 First citation in articleCrossref MedlineGoogle Scholar

  • Saini, P., While, D., Chantler, K., Windfuhr, K., & Kapur, N. (2014). Assessment and management of suicide risk in primary care. Crisis, 35(6), 415–425. 10.1027/0227-5910/a000277 First citation in articleLinkGoogle Scholar

  • Tsamardinos, I., Greasidou, E., & Borboudakis, G. (2018). Bootstrapping the out-of-sample predictions for efficient and accurate cross-validation. Machine Learning. Advance online publication. 10.1007/s10994-018-5714-4 First citation in articleCrossref MedlineGoogle Scholar

  • Vahabzadeh, A., Sahin, N., & Kalali, A. (2016). Digital suicide prevention: Can technology become a game-changer? Innovations in Clinical Neuroscience, 13(5–6), 16–20. First citation in articleMedlineGoogle Scholar

  • Varma, S., & Simon, R. (2006). Bias in error estimation when using cross-validation for model selection. BMC Bioinformatics, 7, 91. 10.1186/1471-2105-7-91 First citation in articleCrossref MedlineGoogle Scholar

  • Walsh, C. G., Ribeiro, J. D., & Franklin, J. C. (2017). Predicting risk of suicide attempts over time through machine learning. Clinical Psychological Science, 5(3), 457–469. 10.1177/2167702617691560 First citation in articleCrossrefGoogle Scholar

  • World Health Organization. (2014). Preventing suicide: A global imperative. Geneva, Switzerland: Author. Retrieved from http://www.who.int/mental_health/suicide-prevention/world_report_2014/en/ First citation in articleGoogle Scholar

  • Youngstrom, E., Meyers, O., Youngstrom, J. K., Calabrese, J. R., & Findling, R. L. (2006). Comparing the effects of sampling designs on the diagnostic accuracy of eight promising screening algorithms for pediatric bipolar disorder. Biological Psychiatry, 60(9), 1013–1019. 10.1016/j.biopsych.2006.06.023 First citation in articleCrossref MedlineGoogle Scholar

  • Youngstrom, E. A. (2013). A primer on receiver operating characteristic analysis and diagnostic efficiency statistics for pediatric psychology: We are ready to ROC. Journal of Pediatric Psychology, 39(2), 204–221. 10.1093/jpepsy/jst062 First citation in articleCrossref MedlineGoogle Scholar