Skip to main content
Research Trends

Differences in Suicide-Related Twitter Content According to User Influence

Published Online:https://doi.org/10.1027/0227-5910/a000865

Abstract.Background: The content of suicide-specific social media posts may impact suicide rates, and putatively harmful and/or protective content may vary by the author’s influence. Aims: This study sought to characterize how suicide-related Twitter content differs according to user influence. Method: Suicide-related tweets from July 1, 2015, to June 1, 2016, geolocated to Toronto, Canada, were collected and randomly selected for coding (n = 2,250) across low, medium, or high user influence levels (based on the number of followers, tweets, retweets, and posting frequency). Logistic regression was used to identify differences by user influence for various content variables. Results: Low- and medium-influence users typically tweeted about personal experiences with suicide and associations with mental health and shared morbid humor/flippant tweets. High-influence users tended to tweet about suicide clusters, suicide in youth, older adults, indigenous people, suicide attempts, and specific methods. Tweets across influence levels predominantly focused on suicide deaths, and few described suicidal ideation or included helpful content. Limitations: Social media data were from a single location and epoch. Conclusion: This study demonstrated more problematic content vis-à-vis safe suicide messaging in tweets by high-influence users and a paucity of protective content across all users. These results highlight the need for further research and potential intervention.

References

  • Abel, M. H. (2002). Humor, stress, and coping strategies. Humor: International Journal of Humor Research, 15(4), 365–381. 10.1515/humr.15.4.365 First citation in articleCrossrefGoogle Scholar

  • American Foundation for Suicide Prevention. (2011). Recommendations for suicide reporting. https://www.datocms-assets.com/12810/1577098761-recommendations.pdf First citation in articleGoogle Scholar

  • Cheng, Q., Shum, A. K. Y., Ip, F. W. L., Wong, H. K., Yip, W. K. K., Kam, A. H. L., & Yip, P. S. F. (2020). Co-creation and impacts of a suicide prevention video. Crisis, 41(1), 7–14. 10.1027/0227-5910/a000593 First citation in articleLinkGoogle Scholar

  • Etzersdorfer, E., Voracek, M., & Sonneck, G. (2004). A dose-response relationship between imitational suicides and newspaper distribution. Archives of Suicide Research, 8(2), 137–145. 10.1080/13811110490270985 First citation in articleCrossref MedlineGoogle Scholar

  • Fahey, R. A., Boo, J., & Ueda, M. (2020). Covariance in diurnal patterns of suicide-related expressions on Twitter and recorded suicide deaths. Social Science & Medicine, 253, Article 112960. 10.1016/j.socscimed.2020.112960 First citation in articleCrossref MedlineGoogle Scholar

  • Fahey, R. A., Matsubayashi, T., & Ueda, M. (2018). Tracking the Werther effect on social media: Emotional responses to prominent suicide deaths on twitter and subsequent increases in suicide. Social Science & Medicine, 219, 19–29. 10.1016/j.socscimed.2018.10.004 First citation in articleCrossref MedlineGoogle Scholar

  • Fazel, S., & Runeson, B. (2020). Suicide. The New England Journal of Medicine, 382(3), 266–274. 10.1056/nejmra1902944 First citation in articleCrossref MedlineGoogle Scholar

  • Hsieh, F. Y., Bloch, D. A., & Larsen, M. D. (1998). A simple method of sample size calculation for linear and logistic regression. Statistics in Medicine, 17(14), 1623–1634. 10.1002/(sici)1097-0258(19980730)17:14<1623::aid-sim871>3.0.co;2-s First citation in articleCrossref MedlineGoogle Scholar

  • Jashinsky, J., Burton, S. H., Hanson, C. L., West, J., Giraud-Carrier, C., Barnes, M. D., & Argyle, T. (2014). Tracking suicide risk factors through Twitter in the US. Crisis, 35(1), 51–59. 10.1027/0227-5910/a000234 First citation in articleLinkGoogle Scholar

  • Lee, C.-Y., Chiang, Y.-C., Li, A., Li X., Wu, Y.-T., Lin, Y.-J., Zhao, Y., & Zhang, X. (2020). Influence of humor expression on suicidal ideation among adolescents: Mediating effects of depressive emotion and positive emotion. BMC Psychiatry, 20(1), Article 421. 10.1186/s12888-020-02814-7 First citation in articleCrossref MedlineGoogle Scholar

  • Liu, X., Huang, J., Yu, N. X., Li, Q., & Zhu, T. (2020). Mediation effect of suicide-related social media use behaviors on the association between suicidal ideation and suicide attempt: Cross-sectional questionnaire study. Journal of Medical Internet Research, 22(4), Article e14940, 10.2196/14940 First citation in articleCrossref MedlineGoogle Scholar

  • Niederkrotenthaler, T., Till, B., & Garcia, D. (2019). Celebrity suicide on Twitter: Activity, content and network analysis related to the death of Swedish DJ Tim Bergling alias Avicii. Journal of Affective Disorders, 245, 848–855, 10.1016/j.jad.2018.11.071 First citation in articleCrossref MedlineGoogle Scholar

  • Niederkrotenthaler, T., Voracek, M., Herberth, A., Till, B., Strauss, M., Etzersdorfer, E., Eisenwort, B., & Sonneck, G. (2010). Role of media reports in completed and prevented suicide: Werther v. Papageno effects. The British Journal of Psychiatry, 197(3), 234–243, 10.1192/bjp.bp.109.074633 First citation in articleCrossref MedlineGoogle Scholar

  • O’Dea, B., Wan, S., Batterham, P. J., Calear, A. L., Paris, C., & Christensen, H. (2015). Detecting suicidality on Twitter. Internet Interventions, 2(2), 183–188, 10.1016/j.invent.2015.03.005 First citation in articleCrossrefGoogle Scholar

  • Pew Research Center. (2021). Social media fact sheet. https://www.pewresearch.org/internet/fact-sheet/social-media/ First citation in articleGoogle Scholar

  • Robinson, J., Hill, N. T. M., Thorn, P., Battersby, R., Teh, Z., Reavley, N. J., Pirkis, J., Lamblin, M., Rice, S., & Skehan, J. (2018). The #chatsafe project. Developing guidelines to help young people communicate safely about suicide on social media: A Delphi study. PLoS One, 13(11), Article e0206584. 10.1371/journal.pone.0206584 First citation in articleCrossref MedlineGoogle Scholar

  • Sinyor, M., Schaffer, A., Heisel, M. J., Picard, A., Adamson, G., Cheung, C. P., Katz, L. Y., Jetly, R., & Sareen, J. (2018a). Media guidelines for reporting on suicide: 2017 Update of the Canadian Psychiatric Association Policy paper. The Canadian Journal of Psychiatry, 63(3), 182–196. 10.1177/0706743717753147 First citation in articleCrossref MedlineGoogle Scholar

  • Sinyor, M., Schaffer, A., Nishikawa, Y., Redelmeier, D. A., Niederkrotenthaler, T., Sareen, J., Levitt, A. J., Kiss, A., & Pirkis, J. (2018b). The association between suicide deaths and putatively harmful and protective factors in media reports. Canadian Medical Association Journal, 190(30), E900–E907. 10.1503/cmaj.170698 First citation in articleCrossrefGoogle Scholar

  • Sinyor, M., Williams, M., Zaheer, R., Loureiro, R., Pirkis, J., Heisel, M. J., Schaffer, A., Cheung, A. H., Redelmeier, D. A., & Niederkrotenthaler, T. (2021a). The relationship between suicide-related Twitter events and suicides in Ontario from 2015 to 2016. Crisis, 42(1), 40–47. 10.1027/0227-5910/a000684 First citation in articleLinkGoogle Scholar

  • Sinyor, M., Williams, M., Zaheer, R., Loureiro, R., Pirkis, J., Heisel, M. J., Schaffer, A., Redelmeier, D. A., Cheung, A. H., & Niederkrotenthaler, T. (2021b). The association between Twitter content and suicide. Australian & New Zealand Journal of Psychiatry, 55(3), 268–276. 10.1177/0004867420969805 First citation in articleCrossref MedlineGoogle Scholar

  • Spates, K., Ye X., & Johnson, A. (2020). “I just might kill myself”: Suicide expressions on Twitter. Death Studies, 44(3), 189–194. 10.1080/07481187.2018.1531085 First citation in articleCrossref MedlineGoogle Scholar

  • Ueda, M., Mori, K., Matsubayashi, T., & Sawada, Y. (2017). Tweeting celebrity suicides: Users' reaction to prominent suicide deaths on Twitter and subsequent increases in actual suicides. Social Science & Medicine, 189, 158–166. 10.1016/j.socscimed.2017.06.032 First citation in articleCrossref MedlineGoogle Scholar