Skip to main content
Articles

Cortical Measures of Anticipation

Published Online:https://doi.org/10.1027/0269-8803.18.23.61

Abstract Anticipation increases the efficiency of cognitive processes by partial advance activation of the neural substrate involved in those processes. In the case of perceptual anticipation, a slow cortical potential named Stimulus-Preceding Negativity (SPN) has been identified. The SPN has been observed preceding four types of stimuli: (1) stimuli providing knowledge-of-results (KR) about past performance, (2) stimuli conveying an instruction about a future task, (3) probe stimuli against which the outcome of a previous task has to be matched, and (4) affective stimuli. The morphology and scalp distribution of the SPN is different in each of these cases, suggesting the presence of separable components. This article reviews more than 15 years of SPN research. Possible neurophysiological generators are considered, as well as models that may describe the generation of the SPN. Suggestions for future research into anticipatory processes and the associated psychophysiological measures are made.

References

  • Baas, J.M.P. , Kenemans, J.L. , Böcker, K.B.E. , Verbaten, M.N. (2002). Threat-induced cortical processing and startle potentiation. Neuroreport, 13, 133– 137 . First citation in articleCrossrefGoogle Scholar

  • Bastiaansen, M.C.M. (2000). Anticipatory attention: An event-related desynchronization approach . Unpublished doctoral dissertation, Tilburg University, The Netherlands . First citation in articleGoogle Scholar

  • Bastiaansen, M.C.M. , Brunia, C.H.M. (2001). Anticipatory attention: An event-related desynchronization approach. International Journal of Psychophysiology, 43, 91– 107 . First citation in articleCrossrefGoogle Scholar

  • Bastiaansen, M.C.M. , Böcker, K.B.E. , Cluitmans, P.J.M. , Brunia, C.H.M. (1999). Event-related desynchronization related to the anticipation of a stimulus providing knowledge of results. Clinical Neurophysiology, 110, 250– 260 . First citation in articleCrossrefGoogle Scholar

  • Bastiaansen, M.C.M. , Böcker, K.B.E. , Brunia, C.H.M. , De Munck, J.C. , Spekreijse, H. (2001). Event-related desynchronization during anticipatory attention for an upcoming stimulus: A comparative EEG/MEG study. Clinical Neurophysiology, 112, 393– 403 . First citation in articleCrossrefGoogle Scholar

  • Bastiaansen, M.C.M. , Böcker, K.B.E. , Brunia, C.H.M. (2002). ERD as an index of anticipatory attention? Effects of stimulus degradation. Psychophysiology, 39, 16– 28 . First citation in articleCrossrefGoogle Scholar

  • Birbaumer, N. , Elbert, T. , Canavan, A.G.M. , Rockstroh, B. (1990). Slow potentials of the cerebral cortex and behavior. Physiological Reviews, 70, 1– 41 . First citation in articleCrossrefGoogle Scholar

  • Birbaumer, N. , Roberts, L.E. , Lutzenberger, W. , Rockstroh, B. , Elbert, T. (1992). Area-specific self-regulation of slow cortical potentials on the sagittal midline and its effects on behavior. Electroencephalography and Clinical Neurophysiology, 84, 353– 361 . First citation in articleCrossrefGoogle Scholar

  • Böcker, K.B.E. , Brunia, C.H.M. , Van den Berg-Lenssen, M.M.C. (1994). A spatiotemporal dipole model of the stimulus preceding negativity (SPN) prior to feedback stimuli. Brain Topography, 7, 71– 88 . First citation in articleCrossrefGoogle Scholar

  • Böcker, K.B.E. , Van Boxtel, G.J.M. (1997). Stimulus-preceding negativity: A class of anticipatory slow potentials. In G.J.M. van Boxtel & K.B.E. Böcker (Eds.), Brain and behavior: Past, present, and future (pp.105-116). Tilburg, The Netherlands: Tilburg University Press . First citation in articleGoogle Scholar

  • Böcker, K.B.E. , Baas, J.M.P. , Kenemans, J.L. , Verbaten, M.N. (2001). Stimulus-preceding negativity induced by fear: A manifestation of affective anticipation. International Journal of Psychophysiology, 43, 77– 90 . First citation in articleCrossrefGoogle Scholar

  • Brunia, C.H.M. (1988). Movement and stimulus preceding negativity. Biological Psychology, 26, 165– 178 . First citation in articleCrossrefGoogle Scholar

  • Brunia, C.H.M. (1993). Waiting in readiness: Gating in attention and motor preparation. Psychophysiology, 30, 327– 339 . First citation in articleCrossrefGoogle Scholar

  • Brunia, C.H.M. , Damen, E.J.P. (1988). Distribution of slow brain potentials related to motor preparation and stimulus anticipation in a time estimation task. Electroencephalography and Clinical Neurophysiology, 69, 234– 243 . First citation in articleCrossrefGoogle Scholar

  • Brunia, C.H.M. , Van Boxtel, G.J.M. (2000). Motor Preparation. In J.T. Caccioppo, L.G. Tassinary, & G.G. Berntson (Eds.), Handbook of psychophysiology (2nd ed., pp.507-532). New York: Cambridge University Press . First citation in articleGoogle Scholar

  • Brunia, C.H.M. , Van Boxtel, G.J.M. (2004). Anticipatory attention to verbal and nonverbal stimuli is reflected in a modality-specific SPN. Experimental Brain Research, 156, 231– 239 . First citation in articleCrossrefGoogle Scholar

  • Brunia, C.H.M. , de Jong, B.M. , van den Berg-Lenssen, M.M.C. , Paans, A.M.J. (2000). Visual feedback about time estimation is related to a right hemisphere activation measure by PET. Experimental Brain Research, 130, 328– 337 . First citation in articleCrossrefGoogle Scholar

  • Büchel, C. , Morris, J. , Dolan, R.J. , Friston, K.J. (1998). Brain systems mediating aversive conditioning: An event-related fMRI study. Neuron, 20, 947– 957 . First citation in articleCrossrefGoogle Scholar

  • Chwilla, D.J. , Brunia, C.H.M. (1991a). Event-related potentials to different feedback stimuli. Psychophysiology, 28, 123– 132 . First citation in articleCrossrefGoogle Scholar

  • Chwilla, D.J. , Brunia, C.H.M. (1991b). Event-related potential correlates of nonmotor anticipation. Biological Psychology, 32, 125– 141 . First citation in articleCrossrefGoogle Scholar

  • Chwilla, D.J. , Brunia, C.H.M. (1992). Effects of emotion on event-related potentials in an arithmetic task. Journal of Psychophysiology, 6, 321– 332 . First citation in articleGoogle Scholar

  • Connor, W.H. , Lang, P.J. (1969). Cortical slow wave and cardiac rate responses in stimulus orientation and reaction time conditions. Journal of Experimental Psychology, 82, 310– 320 . First citation in articleCrossrefGoogle Scholar

  • Damen, E.J.P. , Brunia, C.H.M. (1985). Slow brain potentials related to movement and visual feedback in a response timing task. Biological Psychology, 20, 195– . First citation in articleCrossrefGoogle Scholar

  • Damen, E.J.P. , Brunia, C.H.M. (1987a). Changes in heart rate and slow brain potentials related to motor preparation and stimulus anticipation in a time estimation task. Psychophysiology, 24, 700– 713 . First citation in articleCrossrefGoogle Scholar

  • Damen, E.J.P. , Brunia, C.H.M. (1987b). Precentral potential shifts related to motor preparation and stimulus anticipation: A replication. In R. Johnson, Jr., J.W. Rohrbaugh, & R. Parasuraman (Eds.), Current trends in event-related potential research (EEG Suppl.40) (pp.13-16). Amsterdam: Elsevier . First citation in articleGoogle Scholar

  • Damen, E.J.P. , Brunia, C.H.M. (1994). Is a stimulus conveying task-relevant information a sufficient condition to elicit a stimulus-preceding negativity?. Psychophysiology, 31, 129– 139 . First citation in articleCrossrefGoogle Scholar

  • Donchin, E. , Ritter, W. , McCallum, W.C. (1978). Cognitive psychophysiology: The endogenous components of the ERP. In E. Callaway, P. Tueting, & S.H. Koslow (Eds.), Event-related brain potentials in man (pp.349-411). New York: Academic Press . First citation in articleGoogle Scholar

  • Donchin, E. , Spencer, K.M. , Dien, J. (1997). The varieties of deviant experience: ERP manifestations of deviance processors. In G.J.M. van Boxtel & K.B.E. Böcker (Eds.), Brain and behavior: Past, present, and future (pp.67-91). Tilburg, The Netherlands: Tilburg University Press . First citation in articleGoogle Scholar

  • Elbert, T. , Rockstroh, B. (1987). Threshold regulation: A key to the understanding of the combined dynamics of EEG and event-related potentials. Journal of Psychophysiology, 1, 317– 333 . First citation in articleGoogle Scholar

  • Frost, B.G. , Neill, R.A. , Fenelon, B. (1988). The determinants of the nonmotoric CNV in a complex, variable foreperiod, information processing paradigm. Biological Psychology, 27, 1– 21 . First citation in articleCrossrefGoogle Scholar

  • Gaillard, A.W.K. (1978). Slow brain potentials preceding task performance . Amsterdam: Academic Press . First citation in articleGoogle Scholar

  • Gaillard, A.W.K. , Van Beijsterveldt, C.E.M. (1991). Slow brain potentials elicited by a cue signal. Journal of Psychophysiology, 5, 337– 347 . First citation in articleGoogle Scholar

  • Goldberg, G. (1985). Supplementary motor area structure and function: Review and hypotheses. Behavioral and Brain Sciences, 8, 567– 616 . First citation in articleCrossrefGoogle Scholar

  • Grünewald, G. , Grünewald-Zuberbier, E. (1983). Cerebral potentials during voluntary ramp movements in aiming tasks. In A.W.K. Gaillard & W. Ritter (Eds.), Tutorials in ERP research: Endogenous components (pp.311-327). Amsterdam: North-Holland . First citation in articleCrossrefGoogle Scholar

  • Grünewald-Zuberbier, E. , Grünewald, G. , Runge, H. , Netz, J. , Hömberg, V. (1981). Cerebral potentials during skilled slow positioning movements. Biological Psychology, 13, 71– 87 . First citation in articleCrossrefGoogle Scholar

  • Hillman, C.H. , Apparies, R.J. , Hatfield, B.D. (2000). Motor and nonmotor event-related potentials during a complex processing task. Psychophysiology, 37, 731– 736 . First citation in articleCrossrefGoogle Scholar

  • Hillyard, S.A. (1973). The CNV and human behavior. In W.C. McCallum & J.R. Knott (Eds.), Event-related slow potentials of the brain: Their relations to behavior (EEG Suppl.33) (pp.161-171). Amsterdam: Elsevier . First citation in articleGoogle Scholar

  • Howard, R. , Longmore, F. , Mason, P. (1992). Contingent negative variation as an indicator of sexual object preference revisited. International Journal of Psychophysiology, 13, 185– 188 . First citation in articleCrossrefGoogle Scholar

  • Irwin, D.A. , Knott, J.R. , McAdam, D.W. , Rebert, C.S. (1966). The motivational determinants of the “contingent negative variation.”. Electroencephalography and Clinical Neurophysiology, 21, 538– 543 . First citation in articleCrossrefGoogle Scholar

  • Kenemans, J.L. , Grent-'t Jong, T. , Giesbrecht, B. , Weissman, D. , Woldorff, M.G. , Mangun, G.R. (1992). A sequence of brain activity patterns in the control of visual attention. Psychophysiology, 39, S46– . First citation in articleGoogle Scholar

  • Klorman, R. , Ryan, R.M. (1980). Heart rate, contingent negative variation, and evoked potentials during anticipation of affective stimulation. Psychophysiology, 17, 513– 523 . First citation in articleCrossrefGoogle Scholar

  • Kornhuber, H.H. , Deecke, L. (1965). Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. ‘Brain potential changes during arbitrary and passive movements in humans: Bereitschaftspotential and reafferent potentials’ Pflügers Archiv, 284, 1– 17 . First citation in articleGoogle Scholar

  • Kotani, Y. , Aihara, Y. (1999). The effect of stimulus discriminability on stimulus-preceding negativities prior to instructive and feedback stimuli. Biological Psychology, 50, 1– 18 . First citation in articleCrossrefGoogle Scholar

  • Kotani, Y. , Hiraku, S. , Suda, K. , Aihara, Y. (2001). Effect of positive and negative emotion on stimulus-preceding negativity prior to feedback stimuli. Psychophysiology, 38, 873– 878 . First citation in articleCrossrefGoogle Scholar

  • Kotani, Y. , Ohgami, Y. , Hiraku, S. , Ishii, M. , Aihara, Y. (2002). Effect of reward and stimulus modality on the spatiotemporal dipole model of the stimulus-preceding negativity. Psychophysiology, 39, S48– . First citation in articleGoogle Scholar

  • Kotani, Y. , Ohgami, Y. , Tsukamoto, T. , Omura, K. , Yoshikawa, K. , Aihara, Y. (2003). Functional MRI study of the stimulus-preceding negativity. Psychophysiology, 40(Suppl.1), S53– . First citation in articleGoogle Scholar

  • Kutas, M. (1997). Views on how the electrical activity that the brain generates reflects the functions of different language structures. Psychophysiology, 34, 383– 398 . First citation in articleCrossrefGoogle Scholar

  • LaBerge, D. (1995). Attentional processing: The brain's art of mindfulness . Cambridge: Harvard University Press . First citation in articleCrossrefGoogle Scholar

  • Lopes da Silva, F. , Van Rotterdam, A. (1982). Biophysical aspects of EEG and EMG generation. In E. Niedermeyer & F. Lopes da Silva (Eds.), Electroencephalography (pp.15-26). Baltimore: Urban & Schwarzenberg . First citation in articleGoogle Scholar

  • Loveless, N.E. , Sanford, A.J. (1974a). Effects of age on the contingent negative variation and preparatory set in a reaction time task. Journal of Gerontology, 29, 52– 63 . First citation in articleCrossrefGoogle Scholar

  • Loveless, N.E. , Sanford, A.J. (1974b). Slow potential correlates of preparatory set. Biological Psychology, 1, 303– 314 . First citation in articleCrossrefGoogle Scholar

  • Low, M.D. , Borda, R.P. , Frost, J.D. , Kellaway, P. (1966). Surface-negative, slow potential shift associated with conditioning in man. Neurology, 16, 771– 782 . First citation in articleCrossrefGoogle Scholar

  • Macaluso, E. , Eimer, M. , Frith, C.D. , Driver, J. (2003). Preparatory states in crossmodal spatial attention: Spatial specificity and possible control mechanisms. Experimental Brain Research, 149, 62– 74 . First citation in articleGoogle Scholar

  • Macar, F. , Bonnet, M. (1997). Event-related potentials during temporal information processing. In G.J.M. van Boxtel & K.B.E. Böcker (Eds.), Brain and behavior: Past, present, and future (pp.49-66). Tilburg, The Netherlands: Tilburg University Press . First citation in articleGoogle Scholar

  • McCallum, W.C. , Cooper, R. , Pocock, P.V. (1988). Brain slow potential and ERP changes associated with operator load in a visual tracking task. Electroencephalography and Clinical Neurophysiology, 69, 453– 468 . First citation in articleCrossrefGoogle Scholar

  • Mnatsakanian, E.V. , Tarkka, I.M. (2002). Task-specific expectation is revealed in scalp-recorded slow potentials. Brain Topography, 15, 87– 94 . First citation in articleCrossrefGoogle Scholar

  • Müller-Gethmann, H. , Ulrich, R. , Rinkenauer, G. (2003). Locus of the effect of temporal preparation: Evidence from the lateralized readiness potential. Psychophysiology, 40, 597– 611 . First citation in articleCrossrefGoogle Scholar

  • Ohgami, Y. , Kotani, Y. , Ishii, M. , Aihara, Y. (2002). Effect of reward and stimulus modality on the stimulus-preceding negativity. Psychophysiology, 39, S63– . First citation in articleGoogle Scholar

  • Ohgami, Y. , Kotani, Y. , Hiraku, S. , Aihara, Y. , Ishii, M. (submitted). Effects of reward and stimulus modality on stimulus-preceding negativity . . First citation in articleGoogle Scholar

  • Ohgami, Y. , Kotani, Y. , Tsukamoto, T. , Omura, K. , Yoshikawa, K. , Aihara, Y. , Nakayama, K. (2003). The dipole modeling of the stimulus-preceding negativity based on fMRI results. Psychophysiology, 40 (Suppl.1), S65– . First citation in articleGoogle Scholar

  • Pfurtscheller, G. (1992). Event-related synchronization (ERS): An electrophysiological correlate of cortical areas at rest. Electroencephalography and Clinical Neurophysiology, 83, 62– 69 . First citation in articleCrossrefGoogle Scholar

  • Pfurtscheller, G. , Aranibar, A. (1977). Event-related cortical desynchronization detected by power measurements of the scalp EEG. Electroencephalography and Clinical Neurophysiology, 42, 817– 826 . First citation in articleCrossrefGoogle Scholar

  • Regan, M. , Howard, R. (1995). Fear conditioning, preparedness, and the contingent negative-variation. Psychophysiology, 32, 208– 214 . First citation in articleCrossrefGoogle Scholar

  • Rockstroh, B. , Elbert, T. , Canavan, A. , Lutzenberger, W. , Birbaumer, N. (1989). Slow cortical potentials and behavior . Baltimore: Urban & Schwarzenberg . First citation in articleGoogle Scholar

  • Rockstroh, B. , Müller, M. , Wagner, M. , Cohen, R. , Elbert, T. (1993). Probing the nature of the CNV. Electroencephalography and Clinical Neurophysiology, 87, 235– 241 . First citation in articleCrossrefGoogle Scholar

  • Rohrbaugh, J.W. , Gaillard, A.W.K. (1983). Sensory and motor aspects of the contingent negative variation. In A.W.K. Gaillard & W. Ritter (Eds.), Tutorials in ERP research: Endogenous components (pp.269-310). Amsterdam: North-Holland . First citation in articleCrossrefGoogle Scholar

  • Rösler, F. (1991). Perception or action: Some comments on preparatory negative potentials. In C.H.M. Brunia, G. Mulder, & M.N. Verbaten (Eds.), Event-related brain research (EEG Suppl.42) (pp.116-129). Amsterdam: Elsevier . First citation in articleGoogle Scholar

  • Ruchkin, D.S. , Sutton, S. , Tueting, P. (1975). Emitted and evoked P300 potentials and variation in stimulus probability. Psychophysiology, 12, 591– 595 . First citation in articleCrossrefGoogle Scholar

  • Ruchkin, D.S. , Johnson Jr., R. , Mahaffey, D. , Sutton, S. (1988). Toward a functional categorization of slow waves. Psychophysiology, 25, 339– 353 . First citation in articleCrossrefGoogle Scholar

  • Ruchkin, D.S. , Sutton, S. , Mahaffey, D. , Glaser, J. (1986). Terminal CNV in the absence of motor response. Electroencephalography and Clinical Neurophysiology, 63, 445– 463 . First citation in articleCrossrefGoogle Scholar

  • Simons, R.F. (1988). Event-related slow brain potentials: A perspective from ANS psychophysiology. In P.K. Ackles, J.R. Jennings, & M.G.H. Coles (Eds.), Advances in psychophysiology (Vol.3, pp.189-211). Greenwich: JAI Press . First citation in articleGoogle Scholar

  • Simons, R.F. , Öhman, A. , Lang, P.J. (1979). Anticipation and response set: Cortical, cardiac, and electrodermal correlates. Psychophysiology, 16, 222– 233 . First citation in articleCrossrefGoogle Scholar

  • Skinner, J.E. , Yingling, C.D. (1977). Reconsideration of the cerebral mechanisms underlying selective attention and slow potential shifts. In J.E. Desmedt (Ed.), Progress in clinical neurophysiology: Vol.1. Attention, voluntary contraction, and event-related cerebral potentials (pp.30-69). Basel: Karger . First citation in articleGoogle Scholar

  • Steriade, M. , Llinás, R.R. (1988). The functional states of thalamus and the associated neuronal interplay. Physiological Reviews, 68, 649– 742 . First citation in articleGoogle Scholar

  • Tecce, J.J. , Scheff, N.M. (1969). Attention reduction and suppressed direct-current potentials in the human brain. Science, 164, 331– 333 . First citation in articleCrossrefGoogle Scholar

  • Van Boxtel, G.J.M. (1998). Computational and statistical methods for analyzing event-related potential data. Behavior Research Methods, Instrumentation, and Computers, 30, 87– 102 . First citation in articleCrossrefGoogle Scholar

  • Van Boxtel, G.J.M. , Van den Boogaart, B. , Brunia, C.H.M. (1993). The contingent negative variation in a choice reaction time task. Journal of Psychophysiology, 7, 11– 23 . First citation in articleGoogle Scholar

  • Van Boxtel, G.J.M. , Brunia, C.H.M. (1994a). Motor and nonmotor aspects of slow brain potentials. Biological Psychology, 38, 37– 51 . First citation in articleCrossrefGoogle Scholar

  • Van Boxtel, G.J.M. , Brunia, C.H.M. (1994b). Motor and nonmotor components of the contingent negative variation. International Journal of Psychophysiology, 17, 269– 279 . First citation in articleCrossrefGoogle Scholar

  • Van der Molen, M.W. , Bashore, T.R. , Halliday, R. , Callaway, E. (1991). Chronopsychophysiology: Mental chronometry augmented by psychophysiological time markers. In J.R. Jennings & M.G.H. Coles (Eds.), Handbook of cognitive psychophysiology: Central and autonomic nervous system approaches (pp.9-178). Chichester: Wiley . First citation in articleGoogle Scholar

  • Waldorp, L.J. , Huizenga, H.M. , Grasman, R.P.P.P. , Böcker, K.B.E. , De Munck, J.C. , Molenaar, P.C.M. (2002). Model selection in electromagnetic source analysis with an application to VEFs. IEEE Transactions On Biomedical Engineering, 49, 1121– 1129 . First citation in articleCrossrefGoogle Scholar

  • Walter, W.G. , Cooper, R. , Aldridge, V.J. , McCallum, W.C. , Winter, A.L. (1964). Contingent negative variation: An electric sign of sensorimotor association and expectancy in the human brain. Nature, 203, 380– 384 . First citation in articleCrossrefGoogle Scholar

  • Weerts, T.C. , Lang, P.J. (1973). The effects of eye fixation and stimulus and response location on the contingent negative variation (CNV). Biological Psychology, 1, 1– 19 . First citation in articleCrossrefGoogle Scholar

  • Weinberg, H. (1973). The contingent negative variation: Its relation to feedback and expectant attention. In W.C. McCallum & J.R. Knott (Eds.), Event-related slow potentials of the brain: Their relations to behavior (EEG Suppl.33) (pp.219-228). Amsterdam: Elsevier . First citation in articleGoogle Scholar

  • Yingling, C.D. , Skinner, J.E. (1977). Gating of thalamic input to the cerebral cortex by nucleus reticularis thalami. In J.E. Desmedt (Ed.), Attention, voluntary contraction and slow potential shifts (pp.70-96). Basel: Karger . First citation in articleGoogle Scholar