Skip to main content
Articles

Spatial Abilities in Prepubertal Intellectually Gifted Boys and Genetic Polymorphisms Related to Testosterone Metabolism

Published Online:https://doi.org/10.1027/0269-8803.23.1.1

Spatial abilities are known to be related to testosterone levels in men. Polymorphisms of genes related to androgen metabolism, however, have not been previously analyzed in association with spatial abilities. Our study analyzes genetic polymorphisms of androgen receptor (AR), aromatase (CYP19), and 5-alpha reductase (SRD5A2) in relation to mental rotation and spatial visualization in prepubertal intellectually gifted boys. DNA samples of 36 boys with an average age of 10.0 ± 0.7 years and an IQ higher than 130 were isolated from buccal cells in saliva. DNA was subsequently used for amplification by PCR. The CYP19 C1558-T polymorphism and SRD5A2 A49T polymorphism were determined by RFLP analysis, and the AR (CAG)n polymorphism was determined by fragment analysis. Salivary testosterone levels were measured with radioimmunoassay. Spatial abilities (mental rotation and spatial visualization) were assessed using standard psychometric tests. AR and CYP19 polymorphisms were not associated with spatial abilities. Heterozygotes in A49T polymorphisms (AT) of SRD5A2 had significantly better results in both mental rotation and spatial visualization tests compared to AA homozygotes. TT homozygotes were not found. The T allele of A49T polymorphism of the SRD5A2 was reported to have a 5-fold increased activity in comparison to the A allele. AT heterozygotes outscored AA homozygotes in tests of spatial performance. Since dihydrotestosterone – the product of 5-alpha reductase catalyzed reaction – has a higher affinity to AR, this might indicate a potential molecular mechanism for the influence of SRD5A2 polymorphism on spatial abilities in intellectually gifted prepubertal boys.

References

  • Amthauer, R. (1993). I-S-T test, subtest No 8. Slovak translation and standardization. Bratislava: Psychodiagnostika. First citation in articleGoogle Scholar

  • Burdick, K.E. , Lencz, T. , Funke, B. , Finn, C.T. , Szeszko, P.R. , Kane, J.M. et al. (2006). Genetic variation in DTNBP1 influences general cognitive ability. Human Molecular Genetics, 15, 1563–8. First citation in articleCrossrefGoogle Scholar

  • Celec, P. , Ostatnikova, D. , Putz, Z. , Kudela, M. (2002). The circalunar cycle of salivary testosterone and the visual-spatial performance. Bratislavské Lekárske Listy, 103, 59–69. First citation in articleGoogle Scholar

  • Celec, P. , Ostatnikova, D. , Putz, Z. , Hodosy, J. , Bursky, P. , Starka, L. et al. (2003). Circatrigintan cycle of salivary testosterone in human male. Biological Rhythm Research, 34, 305–315. First citation in articleCrossrefGoogle Scholar

  • Chamberlain, N.L. , Driver, E.D. , Miesfeld, R.L. (1994). The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Research, 22, 3181–6. First citation in articleCrossrefGoogle Scholar

  • Charlier, T.D. , Ball, G.F. , Balthazart, J. (2008). Rapid action on neuroplasticity precedes behavioral activation by testosterone. Hormones and Behavior, 54, 488–495. First citation in articleCrossrefGoogle Scholar

  • Diamond, A. , Briand, L. , Fossella, J. , Gehlbach, L. (2004). Genetic and neurochemical modulation of prefrontal cognitive functions in children. The American Journal of Psychiatry, 161, 125–32. First citation in articleCrossrefGoogle Scholar

  • Dowsing, A.T. , Yong, E.L. , Clark, M. , McLachlan, R.I. , de Kretser, D.M. , Trounson, A.O. (1999). Linkage between male infertility and trinucleotide repeat expansion in the androgen-receptor gene. Lancet, 354, 640–3. First citation in articleCrossrefGoogle Scholar

  • Friederici, A.D. , Pannekamp, A. , Partsch, C.J. , Ulmen, U. , Oehler, K. , Schmutzler, R. et al. (2008). Sex hormone testosterone affects language organization in the infant brain. Neuroreport, 19, 283–286. First citation in articleCrossrefGoogle Scholar

  • Gennari, L. , Masi, L. , Merlotti, D. , Picariello, L. , Falchetti, A. , Tanini, A. et al. (2004). A polymorphic CYP19 TTTA repeat influences aromatase activity and estrogen levels in elderly men: Effects on bone metabolism. The Journal of Clinical Endocrinology and Metabolism, 89, 2803–10. First citation in articleCrossrefGoogle Scholar

  • Gennari, L. , Merlotti, D. , De Paola, V. , Calabro, A. , Becherini, L. , Martini, G. et al. (2005). Estrogen receptor gene polymorphisms and the genetics of osteoporosis: A HuGE review. American Journal of Epidemiology, 161, 307–20. First citation in articleCrossrefGoogle Scholar

  • Geschwind, N. , Galaburda, A.M. (1985). Cerebral lateralization. Biological mechanisms, associations, and pathology I. A hypothesis and a program for research. Archives of Neurology, 42, 428–59. First citation in articleGoogle Scholar

  • Giovannucci, E. , Stampfer, M.J. , Krithivas, K. , Brown, M. , Dahl, D. , Brufsky, A. et al. (1997). The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proceedings of the National Acadamy of Sciences of the United States of America, 94, 3320–3. First citation in articleCrossrefGoogle Scholar

  • Goel, N. , Bale, T.L. (2008). Organizational and Activational Effects of Testosterone on Masculinization of Female Physiological and Behavioral Stress Responses. Endocrinology, 149, 6399–6405. First citation in articleCrossrefGoogle Scholar

  • Gouchie, C. , Kimura, D. (1991). The relationship between testosterone levels and cognitive ability patterns. Psychoneuroendocrinology, 16, 323–34. First citation in articleCrossrefGoogle Scholar

  • Gron, G. , Wunderlich, A.P. , Spitzer, M. , Tomczak, R. , Riepe, M.W. (2000). Brain activation during human navigation: Gender-different neural networks as substrate of performance. Nature Neuroscience, 3, 404–408. First citation in articleCrossrefGoogle Scholar

  • Haiman, C.A. , Stram, D.O. , Pike, M.C. , Kolonel, L.N. , Burtt, N.P. , Altshuler, D. et al. (2003). A comprehensive haplotype analysis of CYP19 and breast cancer risk: The Multiethnic Cohort. Human Molecular Genetics, 12, 2679–92. First citation in articleCrossrefGoogle Scholar

  • Halpern, D.F. , Tan, U. (2001). Stereotypes and steroids: Using a psychobiosocial model to understand cognitive sex differences. Brain and Cognition, 45, 392–414. First citation in articleCrossrefGoogle Scholar

  • Jones, C.M. , Braithwaite, V.A. , Healy, S.D. (2003). The evolution of sex differences in spatial ability. Behavioral Neuroscience, 117, 403–11. First citation in articleCrossrefGoogle Scholar

  • Kristensen, V.N. , Harada, N. , Yoshimura, N. , Haraldsen, E. , Lonning, P.E. , Erikstein, B. et al. (2000). Genetic variants of CYP19 (aromatase) and breast cancer risk. Oncogene, 19, 1329–33. First citation in articleCrossrefGoogle Scholar

  • Kuiper, G.G. , Faber, P.W. , van Rooij, H.C. , van der Korput, J.A. , Ris-Stalpers, C. , Klaassen, P. et al. (1989). Structural organization of the human androgen receptor gene. Journal of Molecular Endocrinology, 2, R1–4. First citation in articleGoogle Scholar

  • La Spada, A.R. , Wilson, E.M. , Lubahn, D.B. , Harding, A.E. , Fischbeck, K.H. (1991). Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature, 352, 77–9. First citation in articleCrossrefGoogle Scholar

  • Lench, N. , Stanier, P. , Williamson, R. (1988). Simple noninvasive method to obtain DNA for gene analysis. Lancet, 1, 1356–8. First citation in articleCrossrefGoogle Scholar

  • LeVay, S. (1991). A difference in hypothalamic structure between heterosexual and homosexual men. Science, 253, 1034–7. First citation in articleCrossrefGoogle Scholar

  • Makridakis, N. , Ross, R.K. , Pike, M.C. , Chang, L. , Stanczyk, F.Z. , Kolonel, L.N. et al. (1997). A prevalent missense substitution that modulates activity of prostatic steroid 5alpha-reductase. Cancer Research, 57, 1020–2. First citation in articleGoogle Scholar

  • Makridakis, N.M. , Ross, R.K. , Pike, M.C. , Crocitto, L.E. , Kolonel, L.N. , Pearce, C.L. et al. (1999). Association of mis-sense substitution in SRD5A2 gene with prostate cancer in African-American and Hispanic men in Los Angeles, USA. Lancet, 354, 975–8. First citation in articleCrossrefGoogle Scholar

  • McEwen, B.S. (2001). Genome and hormones: Gender differences in physiology – invited review: Estrogens effects on the brain: Multiple sites and molecular mechanisms. Journal of Applied Physiology, 91, 2785–2801. First citation in articleCrossrefGoogle Scholar

  • Negri-Cesi, P. , Colciago, A. , Celotti, F. , Motta, M. (2004). Sexual differentiation of the brain: Role of testosterone and its active metabolites. Journal of Endocrinological Investigation, 27, 120–7. First citation in articleGoogle Scholar

  • Ntais, C. , Polycarpou, A. , Ioannidis, J.P. (2003). SRD5A2 gene polymorphisms and the risk of prostate cancer: A meta-analysis. Cancer Epidemiology Biomarkers and Prevention, 12, 618–24. First citation in articleGoogle Scholar

  • Nyby, J.G. (2008). Reflexive testosterone release: A model system for studying the nongenomic effects of testosterone upon male behavior. Frontiers in Neuroendocrinology, 29, 199–210. First citation in articleCrossrefGoogle Scholar

  • Ostatnikova, D. , Laznibatova, J. , Putz, Z. , Mataseje, A. , Dohnanyiova, M. , Pastor, K. (2000). Salivary testosterone levels in intellectually gifted and nonintellectually gifted preadolescents: An exploratory study. High Ability Studies, 11, 41–54. First citation in articleCrossrefGoogle Scholar

  • Ostatnikova, D. , Pastor, K. , Putz, Z. , Dohnanyiova, M. , Mat’aseje, A. , Hampl, R. (2002). Salivary testosterone levels in preadolescent children. BMC Pediatrics, 2, 5. First citation in articleCrossrefGoogle Scholar

  • Ostatnikova, D. , Celec, P. , Putz, Z. , Hodosy, J. , Schmidt, F. , Laznibatova, J. et al. (2007). Intelligence and salivary testosterone levels in prepubertal children. Neuropsychologia, 45, 1378–1385. First citation in articleCrossrefGoogle Scholar

  • Perrin, J.S. , Herve, P.Y. , Leonard, G. , Perron, M. , Pike, G.B. , Pitiot, A. et al. (2008). Growth of white matter in the adolescent brain: Role of testosterone and androgen receptor. Journal of Neuroscience, 28, 9519–9524. First citation in articleCrossrefGoogle Scholar

  • Polymeropoulos, M.H. , Xiao, H. , Rath, D.S. , Merril, C.R. (1991). Tetranucleotide repeat polymorphism at the human aromatase cytochrome P-450 gene (CYP19). Nucleic Acids Research, 19, 195. First citation in articleCrossrefGoogle Scholar

  • Reichardt, J.K. , Makridakis, N. , Henderson, B.E. , Yu, M.C. , Pike, M.C. , Ross, R.K. (1995). Genetic variability of the human SRD5A2 gene: Implications for prostate cancer risk. Cancer Research, 55, 3973–5. First citation in articleGoogle Scholar

  • Reio, T.G.J. , Czarnolewski, M. , Eliot, J. (2004). Handedness and spatial ability: Differential patterns of relationships. Laterality, 9, 339–58. First citation in articleCrossrefGoogle Scholar

  • Rupprecht, R. (2003). Neuroactive steroids: Mechanisms of action and neuropsychopharmacological properties. Psychoneuroendocrinology, 28, 139–68. First citation in articleCrossrefGoogle Scholar

  • Smith, P. , Whetton, C. (1993). NFER-Nelson, 1998. Slovak translation and standardization. Bratislava: Psychodiagnostika. First citation in articleGoogle Scholar

  • Swerdloff, R.S. , Wang, C. , Hines, M. , Gorski, R. (1992). Effect of androgens on the brain and other organs during development and aging. Psychoneuroendocrinology, 17, 375–83. First citation in articleCrossrefGoogle Scholar

  • Tofteng, C.L. , Kindmark, A. , Brandstrom, H. , Abrahamsen, B. , Petersen, S. , Stiger, F. et al. (2004). Polymorphisms in the CYP19 and AR genes-relation to bone mass and longitudinal bone changes in postmenopausal women with or without hormone replacement therapy: The Danish Osteoporosis Prevention Study. Calcified Tissue International, 74, 25–34. First citation in articleCrossrefGoogle Scholar

  • Tut, T.G. , Ghadessy, F.J. , Trifiro, M.A. , Pinsky, L. , Yong, E.L. (1997). Long polyglutamine tracts in the androgen receptor are associated with reduced trans-activation, impaired sperm production, and male infertility. The Journal of Clinical Endocrinology and Metabolism, 82, 3777–3782. First citation in articleGoogle Scholar

  • van de Beek, C. , Thijssen, J.H. , Cohen-Kettenis, P.T. , van Goozen, S.H. , Buitelaar, J.K. (2004). Relationships between sex hormones assessed in amniotic fluid, and maternal and umbilical cord serum: What is the best source of information to investigate the effects of fetal hormonal exposure? Hormones and Behavior, 46, 663–9. First citation in articleCrossrefGoogle Scholar

  • Walter, K.D. , Roberts, A.E. , Brownlow, S. (2000). Spatial perception and mental rotation produce gender differences in cerebral hemovelocity: A TCD study. Journal of Psychophysiology, 14, 37–45. First citation in articleLinkGoogle Scholar