Skip to main content
Article

Male Smokers’ Behavioral and Brain Responses to Deviant Cigarette-Related Stimuli in a Two-Choice Oddball Paradigm

Published Online:https://doi.org/10.1027/0269-8803/a000195

Abstract. Experimental studies on smoking and response-inhibition capacity have revealed inconsistent findings, which might be due to differences in sensitivity of the behavioral paradigms used. Here we aimed to replicate the impaired response inhibition in male smokers that was found in a previous study using a two-choice oddball task. This task enables the use of response times as index of inhibition capacity and equalizes the response requirement for the different trial types. In addition, we measured event-related brain potentials to explore the nature of the cognitive processes underlying the behavioral difference. Smokers (n = 19) and non-smokers (n = 19) were asked to make a different response to frequent standard stimuli (cigarette-unrelated pictures) than to infrequent deviant stimuli (cigarette-related pictures). Compared to non-smokers, smokers took a longer time to respond to deviant but not standard stimuli. In addition, smokers, but not non-smokers, displayed a smaller N2 amplitude to deviant than standard stimuli, and only the non-smokers showed larger P3 amplitudes to deviant compared to standard stimuli. Moreover, the response time (RT) measure was differentially correlated with N2 and P3 amplitudes in smokers and non-smokers. The joint results support the notion of deviant cognitive processes in smokers compared to non-smokers that are either directly or indirectly related to response-inhibition capacity.

References

  • Ashby, F. G., Ennis, J. M. & Spiering, B. J. (2007). A neurobiological theory of automaticity in perceptual categorization. Psychological Review, 114, 632–656. doi: 10.1037/0033-295X.114.3.632 First citation in articleCrossrefGoogle Scholar

  • Barry, R. J. & Rushby, J. A. (2006). An orienting reflex perspective on anteriorisation of the P3 of the event-related potential. Experimental Brain Research, 173, 539–545. doi: 10.1007/s00221-006-0590-8 First citation in articleCrossrefGoogle Scholar

  • Bekker, E. M., Kenemans, J. L. & Verbaten, M. N. (2004). Electrophysiological correlates of attention, inhibition, sensitivity and bias in a continuous performance task. Clinical Neurophysiology, 115, 2001–2013. doi: 10.1016/j.clinph.2004.04.008 First citation in articleCrossrefGoogle Scholar

  • Bekker, E. M., Kenemans, J. L. & Verbaten, M. N. (2005). Source analysis of the N2 in a cued Go/NoGo task. Cognitive Brain Research, 22, 221–231. doi: 10.1016/j.cogbrainres.2004.08.011 First citation in articleCrossrefGoogle Scholar

  • Billieux, J., Gay, P., Rochat, L., Khazaal, Y., Zullino, D. & Van der Linden, M. (2010). Lack of inhibitory control predicts cigarette smoking dependence: Evidence from a non-deprived sample of light to moderate smokers. Drug and Alcohol Dependence, 112, 164–167. doi: 10.1016/j.drgalcdep. 2010.06.006 First citation in articleCrossrefGoogle Scholar

  • Bokura, H., Yamaguchi, S. & Kobayashi, S. (2001). Electrophysiological correlates for response inhibition in a Go/NoGo task. Clinical Neurophysiology, 112, 2224–2232. doi: 10.1016/S1388-2457(01)00691-5 First citation in articleCrossrefGoogle Scholar

  • Buzzell, G. A., Fedota, J. R., Roberts, D. M. & McDonald, C. G. (2014). The N2 ERP component as an index of impaired cognitive control in smokers. Neuroscience Letters, 563, 61–65. doi: 10.1016/j.neulet.2014.01.030 First citation in articleCrossrefGoogle Scholar

  • Callicott, J. H., Mattay, V. S., Verchinski, B. A., Marenco, S., Egan, M. F. & Weinberger, D. R. (2003). Complexity of prefrontal cortical dysfunction in schizophrenia: More than up or down. The American Journal of Psychiatry, 12, 2209–2215. doi: 10.1176/appi.ajp.160.12.2209 First citation in articleCrossrefGoogle Scholar

  • DeGrandpre, R. J., Bickel, W. K. & Higgins, S. T. (1992). Emergent equivalence relations between interoceptive (drug) and exteroceptive (visual) stimuli. Journal of the Experimental Analysis of Behavior, 58, 9–18. doi: 10.1901/jeab.1992.58-9 First citation in articleCrossrefGoogle Scholar

  • Dinn, W. M., Aycicegi, A. & Harris, C. L. (2004). Cigarette smoking in a student sample: Neurocognitive and clinical correlates. Addictive Behaviors, 29, 107–126. doi: 10.1016/j.addbeh.2003.07.001 First citation in articleCrossrefGoogle Scholar

  • Dumontheil, I., Gilbert, S. J., Frith, C. D. & Burgess, P. W. (2010). Recruitment of lateral rostral prefrontal cortex in spontaneous and task-related thought. The Quarterly Journal of Experimental Psychology, 63, 1740–1756. doi: 10.1080/17470210903538114 First citation in articleCrossrefGoogle Scholar

  • Evans, D. E., Park, J. Y., Maxfield, N. & Drobes, D. J. (2009). Neurocognitive variation in smoking behavior and withdrawal: Genetic and affective moderators. Genes, Brain, and Behavior, 8, 86–96. doi: 10.1111/j.1601-183X.2008.00445.x First citation in articleCrossrefGoogle Scholar

  • Falkenstein, M., Hoormann, J. & Hohnsbein, J. (1999). ERP components in Go/Nogo tasks and their relation to inhibition. Acta Psychologica, 101, 267–291. doi: 10.1016/S0001-6918(99)00008-6 First citation in articleCrossrefGoogle Scholar

  • Feil, J., Sheppard, D., Fitzgerald, P. B., Yücel, M., Lubman, D. I. & Bradshaw, J. L. (2010). Addiction, compulsive drug seeking, and the role of frontostriatal mechanisms in regulating inhibitory control. Neuroscience and Biobehavioral Reviews, 35, 248–275. doi: 10.1016/j.neurobiorev.2010.03.001 First citation in articleCrossrefGoogle Scholar

  • Ferrari, V., Bradley, M. M., Codispoti, M. & Lang, P. J. (2009). Detecting novelty and significance. Journal of Cognitive Neuroscience, 22, 404–411. doi: 10.1162/jocn.2009.21244 First citation in articleCrossrefGoogle Scholar

  • Field, M. & Cox, W. M. (2008). Attentional bias in addictive behaviors: A review of its development, causes, and consequences. Drug and Alcohol Dependence, 97, 1–20. doi: 10.1016/j.drugalcdep.2008.03.030 First citation in articleCrossrefGoogle Scholar

  • Folstein, J. R. & Van Petten, C. (2008). Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology, 45, 152–170. doi: 10.1111/j.1469-8986.2007.00602.x First citation in articleCrossrefGoogle Scholar

  • Groom, M. J. & Cragg, L. (2015). Differential modulation of the N2 and P3 event-related potentials by response conflict and inhibition. Brain and Cognition, 97, 1–9. doi: 10.1016/j.bandc.2015.04.004 First citation in articleCrossrefGoogle Scholar

  • Heatherton, T. F., Kozlowski, L. T., Frecker, R. C. & Fagerström, K.-O. (1991). The Fagerström test for nicotine dependence: A revision of the Fagerström Tolerance Questionnaire. British Journal of Addiction, 86, 1119–1127. First citation in articleCrossrefGoogle Scholar

  • Huang, C., Lin, H. & Wang, H. (2006). The psychometric properties of the Chinese version of the Fagerstrom Test for Nicotine Dependence. Addictive Behaviors, 31, 2324–2327. doi: 10.1016/j.addbeh.2006.02.024 First citation in articleCrossrefGoogle Scholar

  • Kok, A. (1988). Overlap between P300 and movement-related potentials: A response to Verleger. Biological Psychology, 27, 51–58. doi: 10.1016/0301-0511(88)90005-1 First citation in articleCrossrefGoogle Scholar

  • Lang, P. J., Bradley, M. M. & Cuthbert, B. N. (2005). International Affective Picture System (IAPS): Affective ratings of pictures and instruction manual (Technical Report No. A-6). Gainesville, Fl: University of Florida. First citation in articleGoogle Scholar

  • Luijten, M., Littel, M. & Franken, I. H. (2011). Deficits in inhibitory control in smokers during a Go/NoGo task: An investigation using event-related brain potentials. PloS One, 6, e18898. doi: 10.1371/journal.pone.0018898 First citation in articleCrossrefGoogle Scholar

  • Luijten, M., Machielsen, M. W. J., Veltman, D. J., Hester, R., De Haan, L. & Franken, I. H. A. (2014). Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions. Journal of Psychiatry & Neuroscience, 39, 149–169. doi: 10.1503/jpn.130052 First citation in articleCrossrefGoogle Scholar

  • Nestor, L., McCabe, E., Jones, J., Clancy, L. & Garavan, H. (2011). Differences in “bottom-up” and “top-down” neural activity in current and former cigarette smokers: Evidence for neural substrates which may promote nicotine abstinence through increased cognitive control. NeuroImage, 56, 2258–2275. doi: 10.1016/j.neuroimage.2011.03.054 First citation in articleCrossrefGoogle Scholar

  • Nieuwenhuis, S., Aston-Jones, G. & Cohen, J. D. (2005). Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychological Bulletin, 131, 510–532. doi: 10.1037/0033-2909.131.4.510 First citation in articleCrossrefGoogle Scholar

  • Pires, L., Leitão, J., Guerrini, C. & Simões, M. R. (2014). Event-related brain potentials in the study of inhibition: Cognitive control, source localization and age-related modulations. Neuropsychology Review, 24, 461–490. doi: 10.1007/s11065-014-9275-4 First citation in articleCrossrefGoogle Scholar

  • Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118, 2128–2148. doi: 10.1016/j.clinph.2007.04.019 First citation in articleCrossrefGoogle Scholar

  • Robertson, I. H., Manly, T., Andrade, J., Baddeley, B. T. & Yiend, J. (1997). “Oops!”: Performance correlates of everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia, 35, 747–758. doi: 10.1016/S0028-3932(97)00015-8 First citation in articleCrossrefGoogle Scholar

  • Shek, D. T. L. (1990). Reliability and factorial structure of the Chinese version of the Beck Depression Inventory. Journal of Clinical Psychology, 46, 35–43. doi: 10.1002/1097-4679(199001) First citation in articleCrossrefGoogle Scholar

  • Smith, J. L., Mattick, R. P., Jamadar, S. D. & Iredale, J. M. (2014). Deficits in behavioural inhibition in substance abuse and addiction: A meta-analysis. Drug and Alcohol Dependence, 145, 1–33. doi: 10.1016/j.drugalcdep. 2014.08.009 First citation in articleCrossrefGoogle Scholar

  • Smith, J. L., Smith, E. A., Provost, A. L. & Heathcote, A. (2010). Sequence effects support the conflict theory of N2 and P3 in the Go/NoGo task. International Journal of Psychophysiology, 75, 217–226. doi: 10.1016/j.iipsycho.2009.11.002 First citation in articleCrossrefGoogle Scholar

  • Spinella, M. (2002). Correlations between orbitofrontal dysfunction and tobacco smoking. Addiction Biology, 7, 381–384. doi: 10.1080/1355621021000005964 First citation in articleCrossrefGoogle Scholar

  • Tiffany, S. T. (1990). A cognitive model of drug urges and drug-use behavior: Role of automatic and nonautomatic processes. Psychological Review, 97, 147–168. doi: 10.1037/0033-295X.97.2.147 First citation in articleCrossrefGoogle Scholar

  • Verdejo-Garcia, A., Lawrence, A. J. & Clark, L. (2008). Impulsivity as a vulnerability marker for substance-use disorders: Review of findings from high-risk research, problem gamblers and genetic association studies. Neuroscience and Biobehavioral Reviews, 34, 777–810. doi: 10.1016/j.neubiorev.2007.11.003 First citation in articleCrossrefGoogle Scholar

  • Yuan, J., He, Y., Qinglin, Z., Chen, A. & Li, H. (2008). Gender differences in behavioral inhibitory control: ERP evidence from a two-choice oddball task. Psychophysiology, 45, 986–993. doi: 10.1111/j.1469-8986.2008.00693.x First citation in articleCrossrefGoogle Scholar

  • Yuan, J., Meng, X., Yang, J., Yao, G., Hu, L. & Yuan, H. (2012). The valence strength of unpleasant emotion modulates brain processing of behavioral inhibitory control: Neural correlates. Biological Psychology, 89, 240–251. doi: 10.1016/j.biopsycho.2011.10.015 First citation in articleCrossrefGoogle Scholar

  • Wang, Y., Yang, J., Yuan, J., Fu, A., Meng, X. & Li, H. (2011). The impact of emotion valance on brain processing of behavioral inhibitory control: Spatiotemporal dynamics. Neuroscience Letters, 502, 112–116. doi: 10.1016/j.neulet.2011.07.039 First citation in articleCrossrefGoogle Scholar

  • Winer, B. J. (1971). Statistical principles in experimental design (2nd ed.). New York, NY: McGraw-Hill. First citation in articleGoogle Scholar

  • Zhao, X., Liu, X. T., Zan, X. Y., Dai, L. & Zhou, A. B. (2015). Response inhibition of cigarette-related cues in male light smokers: Behavioral evidence using a two-choice oddball paradigm. Frontiers in Psychology, 6, 1506. doi: 10.3389/fpsyg.2015.01506 First citation in articleCrossrefGoogle Scholar

  • Zhao, X., Liu, X., Zan, X., Jin, G. & Maes, J. H. R. (2016). Male smokers’ and non-smokers’ response inhibition in go/no-go tasks: Effect of three task parameters. PloS One, 11, e0160595. doi: 10.1371/journal.pone.0160595 First citation in articleCrossrefGoogle Scholar

  • Zhou, L., Xiao, S. Y., Xiao-Yan, H. E. & Jie, L. I. (2006). Reliability and validity of Chinese version of Barratt Impulsiveness Scale-11. Chinese Journal of Clinical Psychology, 14, 343–344. First citation in articleGoogle Scholar