Skip to main content
Article

Evaluating the Association of High Trait Anxiety With a Bias in Familiarity-Based Recognition of Emotional Stimuli

Published Online:https://doi.org/10.1027/0269-8803/a000246

Abstract. In the past decades the role of cognitive biases as maintaining factors of anxiety has been widely researched. This theoretical framework assumes that vulnerability self-referential thoughts promote a hyper-vigilant mode of processing environmental stimuli. In this mode, threatening information increases attentional capture and therefore encoding and retrieval of such stimuli is enhanced. Although this attentional bias has been confirmed, the evidence concerning the memory bias is contradictory. Our hypothesis is that the bias in memory is expressed through the pattern of recognition. Particularly, the aim of this study was to evaluate the association of anxiety with familiarity, a deficient form of recognition which consists only in the identification of the item without retrieval of contextual information. Two groups of 17 participants with low and high anxiety levels performed an experimental task of visual recognition memory, using neutral, positive, and negative pictures. The experiment had two test phases, with a 24-hour interval, to evaluate possible effects of consolidation. The pattern of recognition was measured, behaviorally (through an independent Remember/Know paradigm) and through event-related potentials (ERP). Participants with higher levels of anxiety developed a bias in recognition of arousing stimuli (positive and negative) compared with the control group. This bias was observed behaviorally through an increase of familiarity-based recognition, and was associated with a positive modulation of a right parietal late positive component (LPC) at approximately 600 ms of latency. Participants with higher levels of anxiety are capable of recognizing arousing stimuli but lack efficiency in retrieving past contextual information compared to lower level anxiety participants. A recognition bias can be the first step in cognitive distortions that generate anxiety. This is, to our knowledge, the first study to explore the association of anxiety with familiarity-based recognition, using an independent Remember/Know paradigm combined with electrophysiological data. Further studies with bigger samples and more recording channels are needed to confirm the electrophysiological findings.

References

  • Aggleton, J., & Brown, M. (2006). Interleaving brain systems for episodic and recognition memory. Trends in Cognitive Sciences, 10, 455–463. https://doi.org/10.1016/j.tics.2006.08.003 First citation in articleCrossrefGoogle Scholar

  • Allan, K., Wilding, E., & Rugg, M. (1998). Electrophysiological evidence for dissociable processes contributing to recollection. Acta Psychologica, 98, 231–252. https://doi.org/10.1016/S0001-6918(97)00044-9 First citation in articleCrossrefGoogle Scholar

  • American Psychiatric Association. (2013). Anxiety Disorders. In Diagnostic and statistical manual of mental disorders (5th ed.). https://doi.org/10.1176/appi.books.9780890425596.dsm05 First citation in articleGoogle Scholar

  • Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M., & van IJzendoorn, M. (2007). Threat-related attentional bias in anxious and nonanxious individuals: A meta-analytic study. Psychological Bulletin, 133, 1–24. https://doi.org/10.1037/0033-2909.133.1.1 First citation in articleCrossrefGoogle Scholar

  • Beck, A., & Clark, D. (1997). An information processing model of anxiety: Automatic and strategic processes. Behaviour Research and Therapy, 35, 49–58. https://doi.org/10.1016/S0005-7967(96)00069-1 First citation in articleCrossrefGoogle Scholar

  • Bisby, J., & Burgess, N. (2014). Negative affect impairs associative memory but not item memory. Learning & Memory, 21, 21–27. https://doi.org/10.1101/lm.032409.113 First citation in articleGoogle Scholar

  • Bowles, B., Crupi, C., Mirsattari, S., Pigott, S., Parrent, A., Pruessner, J., … Köhler, S. (2007). Impaired familiarity with preserved recollection after anterior temporal-lobe resection that spares the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 104, 16382–16387. https://doi.org/10.1073/pnas.0705273104 First citation in articleCrossrefGoogle Scholar

  • Brewin, C., Gregory, J., Lipton, M., & Burgess, N. (2010). Intrusive images in psychological disorders: Characteristics, neural mechanisms, and treatment implications. Psychological Review, 117, 210–232. https://doi.org/10.1037/a0018113 First citation in articleCrossrefGoogle Scholar

  • Caccioppo, L., Tassinary, L., & Bernston, G. (2007). Handbook of psychophysiology (3rd ed.). New York, NY: Cambridge University Press. First citation in articleCrossrefGoogle Scholar

  • Cansino, S., Maquet, P., Dolan, R., & Rugg, M. (2002). Brain activity underlying encoding and retrieval of source memory. Cerebral Cortex, 12, 1048–1056. https://doi.org/10.1101/gr.3.3.205 First citation in articleCrossrefGoogle Scholar

  • Carlsson, K., Petersson, K., Lundqvist, D., Karlsson, A., Ingvar, M., & Ohman, A. (2004). Fear and the amygdala: Manipulation of awareness generates differential cerebral responses to phobic and fear-relevant (but nonfeared) stimuli. Emotion, 4, 340–353. https://doi.org/10.1037/1528-3542.4.4.340 First citation in articleCrossrefGoogle Scholar

  • Carretié, L. (2014). Exogenous (automatic) attention to emotional stimuli: A review. Cognitive, Affective & Behavioral Neuroscience, 14, 1228–1258. https://doi.org/10.3758/s13415-014-0270-2 First citation in articleCrossrefGoogle Scholar

  • Carretié, L., Hinojosa, J. A., Martín-Loeches, M., Mercado, F., & Tapia, M. (2004). Automatic attention to emotional stimuli: Neural correlates. Human Brain Mapping, 22, 290–299. https://doi.org/10.1002/hbm.20037 First citation in articleCrossrefGoogle Scholar

  • Carretié, L., Hinojosa, J., López-Martín, S., Albert, J., Tapia, M., & Pozo, M. (2009). Danger is worse when it moves: Neural and behavioral indices of enhanced attentional capture by dynamic threatening stimuli. Neuropsychologia, 47, 364–369. https://doi.org/10.1016/j.neuropsychologia.2008.09.007 First citation in articleCrossrefGoogle Scholar

  • Carretié, L., Tapia, M., Mercado, F., Albert, J., López-Martin, S., & de la Serna, J. (2004). Voltage-based versus factor score-based source localization analyses of electrophysiological brain activity: A comparison. Brain Topography, 17, 109–115. https://doi.org/10.1007/s10548-004-1008-1 First citation in articleCrossrefGoogle Scholar

  • Claparede, J. (1911). Reconnaissence et moiite [Recognition and “me-ness”]. Archives de Psychologie, 11, 79–90. First citation in articleGoogle Scholar

  • Clark, D., & Beck, A. (2010). Cognitive therapy of anxiety disorders. New York, NY: Guilford Press. First citation in articleGoogle Scholar

  • Cliff, N. (1987). Analyzing multivariate data. New York, NY: Harcourt Brace Jovanovich. First citation in articleGoogle Scholar

  • Coles, M., & Heimberg, R. (2002). Memory biases in the anxiety disorders: Current status. Clinical Psychology Review, 22, 587–627. First citation in articleCrossrefGoogle Scholar

  • Curran, T., & Cleary, A. (2003). Using ERPs to dissociate recollection from familiarity in picture recognition. Cognitive Brain Research, 15, 191–205. https://doi.org/10.1016/S0926-6410(02)00192-1 First citation in articleCrossrefGoogle Scholar

  • Curran, T., & Doyle, J. (2011). Picture superiority doubly dissociates the ERP correlates of recollection and familiarity. Journal of Cognitive Neuroscience, 23, 1247–1262. https://doi.org/10.1162/jocn.2010.21464 First citation in articleCrossrefGoogle Scholar

  • Diamond, D., Campbell, A., Park, C., Halonen, J., & Zoladz, P. (2007). The temporal dynamics model of emotional memory processing: A synthesis on the neurobiological basis of stress-induced amnesia, flashbulb and traumatic memories, and the Yerkes-Dodson law. Neural Plasticity, 2007, 60803. https://doi.org/10.1155/2007/60803 First citation in articleCrossrefGoogle Scholar

  • Dien, J. (2010). Evaluating two-step PCA of ERP data with Geomin, Infomax, Oblimin, Promax, and Varimax rotations. Psychophysiology, 47, 170–183. https://doi.org/10.1111/j.1469-8986.2009.00885.x First citation in articleCrossrefGoogle Scholar

  • Dolcos, F., LaBar, K., & Cabeza, R. (2005). Remembering one year later: Role of the amygdala and the medial temporal lobe memory system in retrieving emotional memories. Proceedings of the National Academy of Sciences of the United States of America, 102, 2626–2631. https://doi.org/10.1073/pnas.0409848102 First citation in articleCrossrefGoogle Scholar

  • Dowens, M., & Calvo, M. (2003). Genuine memory bias versus response bias in anxiety. Cognition & Emotion, 17, 843–857. https://doi.org/10.1080/02699930244000381 First citation in articleCrossrefGoogle Scholar

  • Eysenck, M., & Derakshan, N. (2011). New perspectives in attentional control theory. Personality and Individual Differences, 50, 955–960. https://doi.org/10.1016/j.paid.2010.08.019 First citation in articleCrossrefGoogle Scholar

  • Eysenck, M., Derakshan, N., Santos, R., & Calvo, M. (2007). Anxiety and cognitive performance: Attentional control theory. Emotion (Washington, D.C.), 7, 336–353. First citation in articleCrossrefGoogle Scholar

  • Fabiani, M., Gratton, G., & Federmeier, K. (2007). Event-related brain potentials: Methods, theory and applications. In J. CacioppoL. TassinaryG. BernstonEds., The Handbook of Psychophysiology (pp. 85–119). New York, NY: Cambridge University Press. First citation in articleGoogle Scholar

  • Farovik, A., Place, R., Miller, D., & Eichenbaum, H. (2011). Amygdala lesions selectively impair familiarity in recognition memory. Nature Neuroscience, 14, 1416–1417. https://doi.org/10.1038/nn.2919 First citation in articleCrossrefGoogle Scholar

  • Fiacconi, C., Owais, S., Peter, E., & Köhler, S. (2016). Knowing by heart: Visceral feedback shapes recognition memory judgments. Journal of Experimental Psychology: General, 145, 1–14. https://doi.org/10.1037/xge0000164 First citation in articleCrossrefGoogle Scholar

  • Fox, E., Russo, R., Bowles, R., & Dutton, K. (2001). Do threatening stimuli draw or hold visual attention in subclinical anxiety? Journal of Experimental Psychology, 130, 681–700. https://doi.org/10.1037/0096-3445.130.4.681 First citation in articleCrossrefGoogle Scholar

  • Fox, E., Russo, R., & Dutton, K. (2002). Attentional bias for threat: Evidence for delayed disengagement from emotional faces. Cognition & Emotion, 16, 1–22. https://doi.org/10.1080/02699930143000527 First citation in articleCrossrefGoogle Scholar

  • Gao, C., Hermiller, M., Voss, J., & Guo, C. (2015). Basic perceptual changes that alter meaning and neural correlates of recognition memory. Frontiers in Human Neuroscience, 9, 49. https://doi.org/10.3389/fnhum.2015.00049 First citation in articleCrossrefGoogle Scholar

  • Graham, R., & Cabeza, R. (2001). Dissociating the neural correlates of item and context memory: An ERP study of face recognition. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 55, 154–161. First citation in articleCrossrefGoogle Scholar

  • Gray, J., & Mcnaughton, N. (2003). The Neuropsychology of anxiety: An enquiry into the funcions of the septo-hippocampal system (2nd ed.). Oxford, UK: Oxford University Press. First citation in articleCrossrefGoogle Scholar

  • Hajcak, G., & Olvet, D. (2008). The persistence of attention to emotion: Brain potentials during and after picture presentation. Emotion (Washington, DC), 8, 250–255. https://doi.org/10.1037/1528-3542.8.2.250 First citation in articleCrossrefGoogle Scholar

  • Hajcak, G., Weinberg, A., MacNamara, A., & Foti, D. (2011). ERPs and the study of emotion. In S. LuckE. KappenmanEds., The Oxford handbook of event-related potentials components (pp. 394–400). Oxford, UK: Oxford University Press. First citation in articleGoogle Scholar

  • Hamann, S. (2001). Cognitive and neural mechanisms of emotional memory. Trends in Cognitive Sciences, 5. https://doi.org/10.1016/S1364-6613(00)01707-1 First citation in articleCrossrefGoogle Scholar

  • Inaba, M., & Ohira, H. (2009). Reduced recollective memory about negative items in high trait anxiety individuals: An ERP study. International Journal of Psychophysiology, 74, 106–113. https://doi.org/10.1016/j.ijpsycho.2009.08.001 First citation in articleCrossrefGoogle Scholar

  • Jacobs, W., & Nadel, L. (1985). Stress-induced recovery of fears and phobias. Psychological Review, 9, 512–531. https://doi.org/10.1037/0033-295X.96.1.180 First citation in articleCrossrefGoogle Scholar

  • Jacobs, W., & Nadel, L. (1999). The first panic attack: A neurobiological theory. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 53, 92–107. First citation in articleCrossrefGoogle Scholar

  • James, W. (1890). Principles of psychology. New York, NY: Henry Holt. First citation in articleCrossrefGoogle Scholar

  • Kensinger, E. (2009). Influences of valence and arousal on emotional memory. In E. KensingerEd., Emotional memory across the adult lifespan (pp. 93–100). New York, NY: Psychology Press. First citation in articleGoogle Scholar

  • Kensinger, E., & Corkin, S. (2004). Two routes to emotional memory: Distinct neural processes for valence and arousal. Proceedings of the National Academy of Sciences of the United States of America, 101, 3310–3315. https://doi.org/10.1073/pnas.0306408101 First citation in articleCrossrefGoogle Scholar

  • Kensinger, E., & Schacter, D. (2006). Amygdala activity is associated with the successful encoding of item, but not source, information for positive and negative stimuli. The Journal of Neuroscience, 26, 2564–2570. https://doi.org/10.1523/JNEUROSCI.5241-05.2006 First citation in articleCrossrefGoogle Scholar

  • Koen, J., & Yonelinas, A. (2010). Memory variability is due to the contribution of recollection and familiarity, not to encoding variability. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 1536–1542. https://doi.org/10.1037/a0020448 First citation in articleCrossrefGoogle Scholar

  • Lang, P., Bradley, M., & Cuthbert, B. (2005). International affective picture system (IAPS): Affective ratings of pictures and instruction manual (Technical Report No A-6). Gainesville, FL: University of Florida First citation in articleGoogle Scholar

  • Lavoie, M., Sauvé, G., Morand-Beaulieu, S., Charron, M., & O’Connor, K. (2014). Effects of obsessive-compulsive disorder symptom intensity on brain electro-cortical activity associated with emotional memory. In V. KalininEd., Obsessive-compulsive disorder – The old and the new problems (pp. 97–115). London, UK: IntechOpen. https://doi.org/10.5772/57179 First citation in articleGoogle Scholar

  • Lipton, M., Brewin, C., Linke, S., & Halperin, J. (2010). Distinguishing features of intrusive images in obsessive-compulsive disorder. Journal of Anxiety Disorders, 24, 816–822. https://doi.org/10.1016/j.janxdis.2010.06.003 First citation in articleCrossrefGoogle Scholar

  • Maratos, E., Allan, K., & Rugg, M. (2000). Recognition memory for emotionally negative and neutral words: An ERP study. Neuropsychologia, 38, 1452–1465. https://doi.org/10.1016/S0028-3932(00)00061-0 First citation in articleCrossrefGoogle Scholar

  • McKay, D. (2005). Studies in cognitive processing during worry. Cognitive Therapy and Research, 29, 359–376. https://doi.org/10.1007/s10608-005-4268-3 First citation in articleCrossrefGoogle Scholar

  • Mecklinger, A. (2000). Interfacing mind and brain: A neurocognitive model of recognition memory. Psychophysiology, 37, 565–582. https://doi.org/10.1111/1469-8986.3750565 First citation in articleCrossrefGoogle Scholar

  • Mercado, F., Carretié, L., Tapia, M., & Gómez-Jarabo, G. (2006). The influence of emotional context on attention in anxious subjects: Neurophysiological correlates. Journal of Anxiety Disorders, 20, 72–84. https://doi.org/10.1016/j.janxdis.2004.10.003 First citation in articleCrossrefGoogle Scholar

  • Mitte, K. (2008). Memory bias for threatening information in anxiety and anxiety disorders: A meta-analytic review. Psychological Bulletin, 134, 886–911. https://doi.org/10.1037/a0013343 First citation in articleCrossrefGoogle Scholar

  • Ochsner, K. (2000). Are affective events richly recollected or simply familiar? The experience and process of recognizing feelings past. Journal of Experimental Psychology: General, 129, 242–261. https://doi.org/10.I037/0096-3445.129.2.242 First citation in articleCrossrefGoogle Scholar

  • Ohman, A. (2008). Fear and anxiety. Overlaps and dissociations. In M. LewisJ. Haviland-JonesL. FeldmanEds., Handbook of emotions (3rd ed., pp. 709–729). New York, NY: Guilford Press. First citation in articleGoogle Scholar

  • Olofsson, J., Gospic, K., Petrovic, P., Ingvar, M., & Wiens, S. (2011). Effects of oxazepam on affective perception, recognition, and event-related potentials. Psycopharmacology, 215, 301–309. https://doi.org/10.1007/s00213-010-2141-z First citation in articleCrossrefGoogle Scholar

  • Paller, K., Voss, J., & Boehm, S. (2007). Validating neural correlates of familiarity. Trends in Cognitive Sciences, 11, 243–250. https://doi.org/10.1016/j.tics.2007.04.002 First citation in articleCrossrefGoogle Scholar

  • Pascual-Marqui, R. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): Technical details. Methods and Findings in Experimental and Clinical Pharmacology, 24(Suppl D), 5–12. First citation in articleGoogle Scholar

  • Pauli, P., Dengler, W., & Wiedemann, W. (2005). Implicit and explicit memory processes in panic patients as reflected in behavioral and electrophysiological measures. Journal of Behavior Therapy and Experimental Psychiatry, 36, 111–127. First citation in articleCrossrefGoogle Scholar

  • Payne, J., & Kensinger, E. (2011). Sleep leads to changes in the emotional memory trace: Evidence from FMRI. Journal of Cognitive Neuroscience, 23, 1285–1297. https://doi.org/10.1162/jocn.2010.21526 First citation in articleCrossrefGoogle Scholar

  • Pérez-Mata, N., López-Martín, S., Albert, J., Carretié, L., & Tapia, M. (2012). Recognition of emotional pictures: Behavioural and electrophysiological measures. Journal of Cognitive Psychology, 24, 256–277. https://doi.org/10.1080/20445911.2011.613819 First citation in articleCrossrefGoogle Scholar

  • Phelps, E., & Sharot, T. (2008). How (and why) emotion enhances the subjective sense of recollection. Current Directions in Psychological Science, 17, 147–152. https://doi.org/10.1111/j.1467-8721.2008.00565.x First citation in articleCrossrefGoogle Scholar

  • Proverbio, A., La Mastra, F., & Zani, A. (2016). How negative social bias affects memory for faces: An electrical neuroimaging study. PLoS One, 11, 1–19. https://doi.org/10.1371/journal.pone.0162671 First citation in articleCrossrefGoogle Scholar

  • Rajaram, S. (1993). Remembering and knowing: Two means of access to the personal past. Memory & Cognition, 21, 89–102. https://doi.org/10.3758/BF03211168 First citation in articleCrossrefGoogle Scholar

  • Rauch, S., Shin, L., & Wright, C. (2003). Neuroimaging studies of amygdala function in anxiety disorders. Annals of the New York Academy of Sciences, 985, 389–410. First citation in articleCrossrefGoogle Scholar

  • Rugg, M. (1995). ERP studies of memory. In M. RuggM. ColesEds., Electrophysiology of mind (pp. 251–257). New York, NY: Oxford University Press. First citation in articleGoogle Scholar

  • Rugg, M., & Curran, T. (2007). Event-related potentials and recognition memory. Trends in Cognitive Sciences, 11. https://doi.org/10.1016/j.tics.2007.04.004 First citation in articleCrossrefGoogle Scholar

  • Rugg, M., & Yonelinas, A. (2003). Human recognition memory: A cognitive neuroscience perspective. Trends in Cognitive Sciences, 7, 313–319. https://doi.org/10.1016/S1364-6613(03)00131-1 First citation in articleCrossrefGoogle Scholar

  • Russo, R., Fox, E., Bellinger, L., & Nguyen-van-tam, D. (2001). Mood-congruent free recall bias in anxiety. Cognition & Emotion, 15, 419–433. https://doi.org/10.1080/02699930125788 First citation in articleCrossrefGoogle Scholar

  • Russo, R., Whittuck, D., Roberson, D., Dutton, K., & Georgiou, G. (2007). Mood-congruent free recall bias in anxious individuals is not a consequence of response bias. Memory, 14, 393–399. First citation in articleCrossrefGoogle Scholar

  • Sandi, C., & Richter-Levin, G. (2009). From high anxiety trait to depression: A neurocognitive hypothesis. Trends in Neurosciences, 32, 312–320. https://doi.org/10.1016/j.tins.2009.02.004 First citation in articleCrossrefGoogle Scholar

  • Schaefer, A., Pottage, C., & Rickart, A. (2011). Electrophysiological correlates of remembering emotional pictures. NeuroImage, 54, 714–724. https://doi.org/10.1016/j.neuroimage.2010.07.030 First citation in articleCrossrefGoogle Scholar

  • Schoo, L., Van Zandvoort, M., Biessels, G., Kappelle, L., Postma, A., & De Haan, E. (2011). The posterior parietal paradox: Why do functional magnetic resonance imaging and lesion studies on episodic memory produce conflicting results? Journal of Neuropsychology, 5, 15–38. https://doi.org/10.1348/174866410X504059 First citation in articleCrossrefGoogle Scholar

  • Seisdedos, N. (2002). STAI. Cuestionario de ansiedad Estado-Rasgo [State-Trait Anxiety Inventory] (6th ed.). Madrid, Spain: TEA. First citation in articleGoogle Scholar

  • Sharot, T., Delgado, M., & Phelps, E. (2004). How emotion enhances the feeling of remembering. Nature Neuroscience, 7, 1376–1380. https://doi.org/10.1038/nn1353 First citation in articleCrossrefGoogle Scholar

  • Sigurdsson, T., Doyère, V., Cain, C., & LeDoux, J. (2007). Long-term potentiation in the amygdala: A cellular mechanism of fear learning and memory. Neuropharmacology, 52, 215–227. https://doi.org/10.1016/j.neuropharm.2006.06.022 First citation in articleCrossrefGoogle Scholar

  • Smith, S. (1994). Theoretical principles of context-dependent memory. In P. MorrisM. GrunebergEds., Theoretical aspects of memory (pp. 168–195). New York, NY: Routledge. First citation in articleGoogle Scholar

  • Snodgrass, J., & Corwin, J. (1988). Pragmatics of measuring recognition memory: Applications to dementia and amnesia. Journal of Experimental Psychology: General, 117, 34–50. https://doi.org/10.1037/0096-3445.117.1.34 First citation in articleCrossrefGoogle Scholar

  • Spielberger, C., Gorsuch, R., & Lushene, R. (1988). STAI. Manual for the State-Trait Anxiety Inventory (Self-Evaluation Questionnaire). Palo Alto, CA: Consulting Psychologists Press. First citation in articleGoogle Scholar

  • Tryon, W. W., & McKay, D. (2009). Memory modification as an outcome variable in anxiety disorder treatment. Journal of Anxiety Disorders, 23, 546–556. https://doi.org/10.1016/j.janxdis.2008.11.003 First citation in articleCrossrefGoogle Scholar

  • Tulving, E. (1985a). How many memory systems are there? American Psychologist, 40, 385–398. https://doi.org/10.1037/0003-066X.40.4.385 First citation in articleCrossrefGoogle Scholar

  • Tulving, E. (1985b). Memory and consciousness. Canadian Psychology/Psychologie Canadienne, 26, 1–12. https://doi.org/10.1037/h0080017 First citation in articleCrossrefGoogle Scholar

  • Tulving, E. (2002). Episodic memory: From mind to brain. Annual Review of Psychology, 53, 1–25. https://doi.org/10.1146/annurev.psych.53.100901.135114 First citation in articleCrossrefGoogle Scholar

  • Tulving, E., & Schacter, D. (1990). Priming and human memory systems. Science, 247, 301–306. First citation in articleCrossrefGoogle Scholar

  • Uncapher, M., Otten, L., & Rugg, M. (2006). Episodic encoding is more than the sum of its parts: An fMRI investigation of multifeatural contextual encoding. Neuron, 52, 547–556. https://doi.org/10.1016/j.neuron.2006.08.011 First citation in articleCrossrefGoogle Scholar

  • Versace, F., Bradley, M., & Lang, P. (2010). Memory and event-related potentials for rapidly presented emotional pictures. Experimental Brain Research, 205, 223–233. https://doi.org/10.1007/s00221-010-2356-6 First citation in articleCrossrefGoogle Scholar

  • Vogt, J., De Houwer, J., Koster, E., Van Damme, S., & Crombez, G. (2008). Allocation of spatial attention to emotional stimuli depends upon arousal and not valence. Emotion, 8, 880–885. https://doi.org/10.1037/a0013981 First citation in articleCrossrefGoogle Scholar

  • Voss, J., Lucas, H., & Paller, K. (2010). Conceptual priming and familiarity: Different expressions of memory during recognition testing with distinct neurophysiological correlates. Journal of Cognitive Neuroscience, 22, 2638–2651. https://doi.org/10.1162/jocn.2009.21341 First citation in articleCrossrefGoogle Scholar

  • Voss, J., & Paller, K. (2009). Remembering and knowing: Electrophysiological distinctions at encoding but not retrieval. NeuroImage, 46, 280–289. https://doi.org/10.1016/j.neuroimage.2009.01.048 First citation in articleCrossrefGoogle Scholar

  • Voss, J., Reber, P., Mesulam, M., Parrish, T., & Paller, K. (2008). Familiarity and conceptual priming engage distinct cortical networks. Cerebral Cortex, 18, 1712–1719. https://doi.org/10.1093/cercor/bhm200 First citation in articleCrossrefGoogle Scholar

  • Wagner, A., Shannon, B., Kahn, I., & Buckner, R. (2005). Parietal lobe contributions to episodic memory retrieval. Trends in Cognitive Sciences, 9, 445–453. https://doi.org/10.1016/j.tics.2005.07.001 First citation in articleCrossrefGoogle Scholar

  • Weymar, M., Bradley, M., Hamm, A., & Lang, P. (2013). When fear forms memories: Threat of shock and brain potentials during encoding and recognition. Cortex, 49, 819–826. https://doi.org/10.1016/j.cortex.2012.02.012 First citation in articleCrossrefGoogle Scholar

  • Weymar, M., Löw, A., & Hamm, A. (2011). Emotional memories are resilient to time: Evidence from the parietal ERP old/new effect. Human Brain Mapping, 32, 632–640. https://doi.org/10.1002/hbm.21051 First citation in articleCrossrefGoogle Scholar

  • Weymar, M., Löw, A., Melzig, C., & Hamm, A. (2009). Enhanced long-term recollection for emotional pictures: Evidence from high-density ERPs. Psychophysiology, 46, 1200–1207. https://doi.org/10.1111/j.1469-8986.2009.00869.x First citation in articleCrossrefGoogle Scholar

  • Woodruff, C., Hayama, H., & Rugg, M. (2006). Electrophysiological dissociation of the neural correlates of recollection and familiarity. Brain Research, 1100, 125–135. https://doi.org/10.1016/j.brainres.2006.05.019 First citation in articleCrossrefGoogle Scholar

  • Yonelinas, A. (1994). Receiver-operating characteristics in recognition memory: Evidence for a dual-process model. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 1341–1354. https://doi.org/10.1037/0278-7393.20.6.1341 First citation in articleCrossrefGoogle Scholar

  • Yonelinas, A. (2002). The nature of recollection and familiarity: A review of 30 years of research. Journal of Memory and Language, 46, 441–517. https://doi.org/10.1006/jmla.2002.2864 First citation in articleCrossrefGoogle Scholar

  • Yonelinas, A., & Jacoby, L. (1995). The relation between remembering and knowing as bases for recognition: Effects of size congruency. Journal of Memory and Language, 34, 622–643. https://doi.org/10.1006/jmla.1995.1028 First citation in articleCrossrefGoogle Scholar

  • Yonelinas, A., Kroll, N., Dobbins, I., Lazzara, M., & Knight, R. (1998). Recollection and familiarity deficits in amnesia: Convergence of remember-know, process dissociation, and receiver operating characteristic data. Neuropsychology, 12, 323–339. https://doi.org/10.1037/0894-4105.12.3.323 First citation in articleCrossrefGoogle Scholar

  • Yonelinas, A., Kroll, N., Quamme, J., Lazzara, M., Sauvé, M., Widaman, K., & Knight, R. (2002). Effects of extensive temporal lobe damage or mild hypoxia on recollection and familiarity. Nature Neuroscience, 5, 1236–1241. https://doi.org/10.1038/nn961 First citation in articleCrossrefGoogle Scholar

  • Yonelinas, A., Otten, L., Shaw, K., & Rugg, M. (2005). Separating the brain regions involved in recollection and familiarity in recognition memory. The Journal of Neuroscience, 25, 3002–3008. https://doi.org/10.1523/JNEUROSCI.5295-04.2005 First citation in articleCrossrefGoogle Scholar

  • Zlomuzica, A., Preusser, F., Totzeck, C., Dere, E., & Margraf, J. (2016). The impact of different emotional states on the memory for what, where and when features of specific events. Behavioural Brain Research, 298, 181–187. https://doi.org/10.1016/j.bbr.2015.09.037 First citation in articleCrossrefGoogle Scholar