Skip to main content
Article

Error Processing During the Online Retrieval of Probabilistic Sequence Knowledge

Published Online:https://doi.org/10.1027/0269-8803/a000262

Abstract. Adaptive behavior involves rapid error processing and action evaluation. However, it has not been clarified how errors contribute to automatic behaviors that can be retrieved to successfully adapt to our complex environment. Automatic behaviors strongly rely on the process of probabilistic sequence learning and memory. Therefore, the present study investigated error processing during the online retrieval of probabilistic sequence knowledge. Twenty-four healthy young adults acquired and continuously retrieved a repeating stimulus sequence reflected by reaction time (RT) changes on a rapid forced-choice RT task. Performance was compared with a baseline that denoted the processing of random stimuli embedded in the probabilistic sequence. At the neurophysiological level, event-related brain potentials synchronized to responses were measured. Error processing was tracked by the error negativity (Ne) and the error positivity (Pe). The mean amplitude of the Ne gradually decreased as the task progressed, similarly for the sequence retrieval and the embedded baseline process. The mean amplitude of the Pe increased over time, likewise, irrespective of the type of the stimuli. Accordingly, we propose that automatic error detection (Ne) and conscious error evaluation (Pe) are not sensitive to sequence learning and retrieval. Overall, the present study provides insight into how error processing takes place for the retrieval of sequence knowledge in a probabilistic environment.

References

  • Armstrong, B. C., Frost, R., & Christiansen, M. H. (2017). The long road of statistical learning research: Past, present and future. Philosophical Transactions of the Royal Society B, 372, 20160047. https://doi.org/10.1098/rstb.2016.0047 First citation in articleCrossrefGoogle Scholar

  • Beaulieu, C., Bourassa, M.-È., Brisson, B., Jolicoeur, P., & De Beaumont, L. (2014). Electrophysiological correlates of motor sequence learning. BMC Neuroscience, 15, 102. https://doi.org/10.1186/1471-2202-15-102 First citation in articleCrossrefGoogle Scholar

  • Bernstein, P. S., Scheffers, M. K., & Coles, M. G. (1995). “Where did I go wrong?” A psychophysiological analysis of error detection. Journal of Experimental Psychology: Human Perception and Performance, 21, 1312–1322. https://doi.org/10.1037/0096-1523.21.6.1312 First citation in articleCrossrefGoogle Scholar

  • Boldt, A., & Yeung, N. (2015). Shared neural markers of decision confidence and error detection. Journal of Neuroscience, 35, 3478–3484. https://doi.org/10.1523/JNEUROSCI.0797-14.2015 First citation in articleCrossrefGoogle Scholar

  • Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652. https://doi.org/10.1037/0033-295x.108.3.624 First citation in articleCrossrefGoogle Scholar

  • Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D., & Cohen, J. D. (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. Science, 280, 747–749. https://doi.org/10.1037/0033-295x.108.3.624 First citation in articleCrossrefGoogle Scholar

  • Coles, M. G. H., Scheffers, M. K., & Holroyd, C. B. (2001). Why is there an ERN/Ne on correct trials? Response representations, stimulus-related components, and the theory of error-processing. Biological Psychology, 56, 173–189. https://doi.org/10.1016/S0301-0511(01)00076-X First citation in articleCrossrefGoogle Scholar

  • Danielmeier, C., & Ullsperger, M. (2011). Post-error adjustments. Frontiers in Psychology, 2, 233. https://doi.org/10.3389/fpsyg.2011.00233 First citation in articleCrossrefGoogle Scholar

  • Delorme, A., Sejnowski, T., & Makeig, S. (2007). Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage, 34, 1443–1449. https://doi.org/10.1016/j.neuroimage.2006.11.004 First citation in articleCrossrefGoogle Scholar

  • Dutilh, G., Van Ravenzwaaij, D., Nieuwenhuis, S., Van der Maas, H. L. J., Forstmann, B. U., & Wagenmakers, E. J. (2012). How to measure post-error slowing: A confound and a simple solution. Journal of Mathematical Psychology, 56, 208–216. https://doi.org/10.1016/j.jmp.2012.04.001 First citation in articleCrossrefGoogle Scholar

  • Dutilh, G., Vandekerckhove, J., Forstmann, B. U., Keuleers, E., Brysbaert, M., & Wagenmakers, E. J. (2012). Testing theories of post-error slowing. Attention, Perception, and Psychophysics, 74, 454–465. https://doi.org/10.3758/s13414-011-0243-2 First citation in articleCrossrefGoogle Scholar

  • Endrass, T., Reuter, B., & Kathmann, N. (2007). ERP correlates of conscious error recognition: Aware and unaware errors in an antisaccade task. European Journal of Neuroscience, 26, 1714–1720. https://doi.org/10.1111/j.1460-9568.2007.05785.x First citation in articleCrossrefGoogle Scholar

  • Falkenstein, M., Hohnsbein, J., Hoormann, J., & Blanke, L. (1991). Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. Electroencephalography and Clinical Neurophysiology, 78, 447–455. https://doi.org/10.1016/0013-4694(91)90062-9 First citation in articleCrossrefGoogle Scholar

  • Ferdinand, N. K., Mecklinger, A., & Kray, J. (2008). Error and deviance processing in implicit and explicit sequence learning. Journal of Cognitive Neuroscience, 20, 629–642. https://doi.org/10.1162/jocn.2008.20046 First citation in articleCrossrefGoogle Scholar

  • Ferdinand, N. K., Rünger, D., Frensch, P. A., & Mecklinger, A. (2010). Event-related potential correlates of declarative and non-declarative sequence knowledge. Neuropsychologia, 48, 2665–2674. https://doi.org/10.1016/j.neuropsychologia.2010.05.013 First citation in articleCrossrefGoogle Scholar

  • Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4, 385–390. https://doi.org/10.1111/j.1467-9280.1993.tb00586.x First citation in articleCrossrefGoogle Scholar

  • Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E. (2018). The error-related negativity. Perspectives on Psychological Science, 13, 200–204. https://doi.org/10.1177/1745691617715310 First citation in articleCrossrefGoogle Scholar

  • Hajcak, G., Moser, J. S., Yeung, N., & Simons, R. F. (2005). On the ERN and the significance of errors. Psychophysiology, 42, 151–160. https://doi.org/10.1111/j.1469-8986.2005.00270.x First citation in articleCrossrefGoogle Scholar

  • Holroyd, C. B., & Coles, M. G. H. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychology Revue, 109, 679–709. https://doi.org/10.1037/0033-295X.109.4.679 First citation in articleCrossrefGoogle Scholar

  • Holroyd, C. B., Krigolson, O. E., Baker, R., Lee, S., & Gibson, J. (2009). When is an error not a prediction error? An electrophysiological investigation. Cognitive, Affective and Behavioral Neuroscience, 9, 59–70. https://doi.org/10.3758/CABN.9.1.59 First citation in articleCrossrefGoogle Scholar

  • Kóbor, A., Horváth, K., Kardos, Z., Takács, Á., Janacsek, K., Csépe, V., & Nemeth, D. (2019). Tracking the implicit acquisition of nonadjacent transitional probabilities by ERPs. Memory & Cognition, 47, 1546–1566. https://doi.org/10.3758/s13421-019-00949-x First citation in articleCrossrefGoogle Scholar

  • Kóbor, A., Takács, Á., Kardos, Z., Janacsek, K., Horváth, K., Csépe, V., & Nemeth, D. (2018). ERPs differentiate the sensitivity to statistical probabilities and the learning of sequential structures during procedural learning. Biological Psychology, 135, 180–193. https://doi.org/10.1016/J.BIOPSYCHO.2018.04.001 First citation in articleCrossrefGoogle Scholar

  • Maier, M. E., Di Pellegrino, G., & Steinhauser, M. (2012). Enhanced error-related negativity on flanker errors: Error expectancy or error significance? Psychophysiology, 49, 899–908. https://doi.org/10.1111/j.1469-8986.2012.01373.x First citation in articleCrossrefGoogle Scholar

  • Maier, M. E., & Steinhauser, M. (2016). Error significance but not error expectancy predicts error-related negativities for different error types. Behavioural Brain Research, 297, 259–267. https://doi.org/10.1016/j.bbr.2015.10.031 First citation in articleCrossrefGoogle Scholar

  • Maier, M. E., Yeung, N., & Steinhauser, M. (2011). Error-related brain activity and adjustments of selective attention following errors. NeuroImage, 56, 2339–2347. https://doi.org/10.1016/j.neuroimage.2011.03.083 First citation in articleCrossrefGoogle Scholar

  • Meyer, A., Riesel, A., & Proudfit, G. H. (2013). Reliability of the ERN across multiple tasks as a function of increasing errors. Psychophysiology, 50, 1220–1225. https://doi.org/10.1111/psyp.12132 First citation in articleCrossrefGoogle Scholar

  • Miyawaki, K., Sato, A., Yasuda, A., Kumano, H., & Kuboki, T. (2005). Explicit knowledge and intention to learn in sequence learning: An event-related potential study. Neuroreport, 16, 705–708. https://doi.org/10.1097/00001756-200505120-00010 First citation in articleCrossrefGoogle Scholar

  • Nemeth, D., Janacsek, K., & Fiser, J. (2013). Age-dependent and coordinated shift in performance between implicit and explicit skill learning. Frontiers in Computational Neuroscience, 7, 147. https://doi.org/10.3389/fncom.2013.00147 First citation in articleCrossrefGoogle Scholar

  • Nieuwenhuis, S., Ridderinkhof, R. K., Blom, J., Band, G. P. H., & Kok, A. (2001). Error-related brain potentials are differentially related to awareness of response errors: Evidence from an antisaccade task. Psychophysiology, 38, 752–760. https://doi.org/10.1017/S0048577201001111 First citation in articleCrossrefGoogle Scholar

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113. https://doi.org/10.1016/0028-3932(71)90067-4 First citation in articleCrossrefGoogle Scholar

  • Olvet, D. M., & Hajcak, G. (2009). The stability of error-related brain activity with increasing trials. Psychophysiology, 46, 957–961. https://doi.org/10.1111/j.1469-8986.2009.00848.x First citation in articleCrossrefGoogle Scholar

  • Overbeek, T. J. M., Nieuwenhuis, S., & Ridderinkhof, K. R. (2005). Dissociable components of error processing. Journal of Psychophysiology, 19, 319–329. https://doi.org/10.1027/0269-8803.19.4.319 First citation in articleLinkGoogle Scholar

  • Pontifex, M. B., Scudder, M. R., Brown, M. L., O’Leary, K. C., Wu, C.-T., Themanson, J. R., & Hillman, C. H. (2010). On the number of trials necessary for stabilization of error-related brain activity across the life span. Psychophysiology, 47, 767–773. https://doi.org/10.1111/j.1469-8986.2010.00974.x First citation in articleGoogle Scholar

  • Ridderinkhof, K. R., Ramautar, J. R., & Wijnen, J. G. (2009). To P E or not to P E: A P3-like ERP component reflecting the processing of response errors. Psychophysiology, 46, 531–538. https://doi.org/10.1111/j.1469-8986.2009.00790.x First citation in articleCrossrefGoogle Scholar

  • Rüsseler, J., Kuhlicke, D., & Münte, T. F. (2003). Human error monitoring during implicit and explicit learning of a sensorimotor sequence. Neuroscience Research, 47, 233–240. https://doi.org/10.1016/S0168-0102(03)00212-8 First citation in articleCrossrefGoogle Scholar

  • Rüsseler, J., Münte, T. F., & Wiswede, D. (2018). On the influence of informational content and key-response effect mapping on implicit learning and error monitoring in the serial reaction time (SRT) task. Experimental Brain Research, 236, 259–273. https://doi.org/10.1007/s00221-017-5124-z First citation in articleCrossrefGoogle Scholar

  • Rüsseler, J., & Rösler, F. (2000). Implicit and explicit learning of event sequences: Evidence for distinct coding of perceptual and motor representations. Acta Psychologica, 104, 45–67. https://doi.org/10.1016/S0001-6918(99)00053-0 First citation in articleCrossrefGoogle Scholar

  • Simons, R. F. (2010). The way of our errors: Theme and variations. Psychophysiology, 47, 1–14. https://doi.org/10.1111/j.1469-8986.2009.00929.x First citation in articleCrossrefGoogle Scholar

  • Simor, P., Zavecz, Z., Horváth, K., Éltető, N., Török, C., Pesthy, O., … Nemeth, D. (2019). Deconstructing procedural memory: Different learning trajectories and consolidation of sequence and statistical learning. Frontiers in Psychology, 9, 2708. https://doi.org/10.3389/fpsyg.2018.02708 First citation in articleCrossrefGoogle Scholar

  • Song, S., Howard, J., & Howard, D. (2007a). Implicit probabilistic sequence learning is independent of explicit awareness. Learning and Memory, 14, 167–176. https://doi.org/10.1101/lm.437407 First citation in articleCrossrefGoogle Scholar

  • Song, S., Howard, J., & Howard, D. (2007b). Sleep does not benefit probabilistic motor sequence learning. Journal of Neuroscience, 27, 12475–12483. https://doi.org/10.1523/JNEUROSCI.2062-07.2007 First citation in articleCrossrefGoogle Scholar

  • Steinemann, N. A., Moisello, C., Ghilardi, M. F., & Kelly, S. P. (2016). Tracking neural correlates of successful learning over repeated sequence observations. NeuroImage, 137, 152–164. https://doi.org/10.1016/j.neuroimage.2016.05.001 First citation in articleCrossrefGoogle Scholar

  • Steinhauser, M., & Yeung, N. (2012). Error awareness as evidence accumulation: Effects of speed-accuracy trade-off on error signaling. Frontiers in Human Neuroscience, 6, 240. https://doi.org/10.3389/fnhum.2012.00240 First citation in articleCrossrefGoogle Scholar

  • Tóth, B., Janacsek, K., Takács, Á., Kóbor, A., Zavecz, Z., & Nemeth, D. (2017). Dynamics of EEG functional connectivity during statistical learning. Neurobiology of Learning and Memory, 144, 216–229. https://doi.org/10.1016/J.NLM.2017.07.015 First citation in articleCrossrefGoogle Scholar

  • Turk-Browne, N. B., Scholl, B. J., Johnson, M. K., & Chun, M. M. (2010). Implicit perceptual anticipation triggered by statistical learning. Journal of Neuroscience, 30, 11177–11187. https://doi.org/10.1523/JNEUROSCI.0858-10.2010 First citation in articleCrossrefGoogle Scholar

  • Verleger, R. (1997). On the utility of P3 latency as an index of mental chronometry. Psychophysiology, 34, 131–156. https://doi.org/10.1111/j.1469-8986.1997.tb02125.x First citation in articleCrossrefGoogle Scholar

  • Verleger, R., Jaśkowski, P., & Wascher, E. (2005). Evidence for an integrative role of P3b in linking reaction to perception. Journal of Psychophysiology, 19, 165–181. https://doi.org/10.1027/0269-8803.19.3.165 First citation in articleLinkGoogle Scholar

  • Verleger, R., Metzner, M. F., Ouyang, G., Śmigasiewicz, K., & Zhou, C. (2014). Testing the stimulus-to-response bridging function of the oddball-P3 by delayed response signals and residue iteration decomposition (RIDE). NeuroImage, 100, 271–280. https://doi.org/10.1016/j.neuroimage.2014.06.036 First citation in articleCrossrefGoogle Scholar

  • Yeung, N., Botvinick, M. M., & Cohen, J. D. (2004). The neural basis of error detection: Conflict monitoring and the error-related negativity. Psychological Review, 111, 931–959. https://doi.org/10.1037/0033-295X.111.4.931 First citation in articleCrossrefGoogle Scholar