On Tuesday, May 28, maintenance work will be carried out on our website. During this time the following actions cannot be performed: Purchases/orders, redeeming access tokens, new user registrations, updates to user details. If you have any questions or comments, please contact our support team at [email protected]
Skip to main content
Article

An Examination of the Orienting and Defensive Responses Using HR and HF-HRV

Published Online:https://doi.org/10.1027/0269-8803/a000320

Abstract: Psychophysiological researchers have demonstrated that the orienting response is characterized by heart rate (HR) decreases and high-frequency heart rate variability (HF-HRV) increases. The defensive response is characterized by HR increases and HF-HRV decreases. In this study, HR and HF-HRV reactivity to a visual stimulus designed to elicit an orienting response (surgery video) and a cognitive task designed to elicit a defensive response (Trier Social Stress Test, math task) were measured among 81 undergraduate students. The order of stimuli presentation was counterbalanced. The expected pattern of reactivity was observed (decreased HR and increased HF-HRV during the video condition; increased HR and decreased HF-HRV during the cognitive math task). The order of stimulus presentation significantly influenced HF-HRV reactivity. When the video stimulus was presented first, a large and significant increase in HF-HRV was observed which indicated vagal activation. When the video stimulus followed the cognitive math task stimulus, lower levels of HF-HRV reactivity and vagal activation were observed. This suggests exposure to the cognitive math task elicited a defensive response that suppressed subsequent orienting responses. Theoretical, psychophysiological, and practical implications of the observed results and future psychophysiological research directions are discussed.

References

  • Allen, J. J., Chambers, A. S., & Towers, D. N. (2007). The many metrics of cardiac chronotropy: A pragmatic primer and a brief comparison of metrics. Biological Psychology, 74, 243–262. First citation in articleCrossrefGoogle Scholar

  • Baldaro, B., Mazzetti, M., Codispoti, M., Tuozzi, G., Bolzani, R., & Trombini, G. (2001). Autonomic reactivity during viewing of an unpleasant film. Perceptual and Motor Skills, 93(3), 797–805. https://doi.org/10.2466/pms.2001.93.3.797 First citation in articleCrossrefGoogle Scholar

  • Bradley, M. M., Codispoti, M., & Lang, P. J. (2006). A multi-process account of startle modulation during affective perception. Psychophysiology, 43(5), 486–497. https://doi.org/10.1111/j.1469-8986.2006.00412.x First citation in articleCrossrefGoogle Scholar

  • Bradley, M. M., Codispoti, M., Cuthbert, B. N., & Lang, P. J. (2001). Emotion and motivation I: Defensive and appetitive reactions in picture processing. Emotion, 1(3), 276–298. https://doi.org/10.1037/1528-3542.1.3.276 First citation in articleCrossrefGoogle Scholar

  • Bradley, M. M., Keil, A., & Lang, P. (2012). Orienting and emotional perception: Facilitation, attenuation, and interference. Frontiers in Psychology, 3, Article 493. https://doi.org/10.3389/fpsyg.2012.00493 First citation in articleCrossrefGoogle Scholar

  • Bradley, M. M., Lang, P. J., & Cuthbert, B. N. (1993). Emotion, novelty, and the startle reflex: Habituation in humans. Behavioral Neuroscience, 107(6), 970–980. https://doi.org/10.1037/0735-7044.107.6.970 First citation in articleCrossrefGoogle Scholar

  • Brindle, R. C., Ginty, A. T., Phillips, A. C., & Carroll, D. (2014). A tale of two mechanisms: A meta-analytic approach toward understanding the autonomic basis of cardiovascular reactivity to acute psychological stress. Psychophysiology, 51, 964–976. https://doi.org/10.1111/psyp.12248 First citation in articleCrossrefGoogle Scholar

  • Camm, A., Malik, M., Bigger, J., Breithardt, G., Cerutti, S., Cohen, R., Coumel, P., Fallen, E., Kennedy, H., Kleiger, R., Lombardi, F., Malliani, A., Moss, A., Rottman, J., Schmidt, G., Schwartz, P., & Singer, D. (1996). Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation, 93(5), 1043–1065. First citation in articleCrossrefGoogle Scholar

  • Coles, M. G. H. (1984). Heart rate and attention: The intake-rejection hypothesis and beyond. In M. G. H. ColesJ. R. JenningsJ. A. SternEds., Psychophysiological perspectives (pp. 276–295). Van Nostrand Reinhold. First citation in articleGoogle Scholar

  • Dantas, E. M., Kemp, A. H., Andreão, R. V., da Silva, V. J. D., Brunoni, A. R., Hoshi, R. A., Bensenor, I. M., Lotufo, P. A., Ribeiro, A. L. P., & Mill, J. G. (2018). Reference values for short‐term resting‐state heart rate variability in healthy adults: Results from the Brazilian longitudinal study of adult health–ELSA-Brasil study. Psychophysiology, 55, 1–12. https://doi.org/10.1111/psyp.13052 First citation in articleCrossrefGoogle Scholar

  • Dantas, E. M., Sant’Anna, M. L., Andreão, R. V., Gonçalves, C. P., Morra, E. A., Baldo, M. P., Rodrigues, S. L., & Mill, J. G. (2012). Spectral analysis of heart rate variability with the autoregressive method: What model order to choose? Computers in Biology and Medicine, 42, 164–170. https://doi.org/10.1016/j.compbiomed.2011.11.004 First citation in articleCrossrefGoogle Scholar

  • Faul, F., Erdfelder, E., Lang, A., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. https://doi.org/10.3758/bf03193146 First citation in articleCrossrefGoogle Scholar

  • Gianaros, P. J., Salomon, K., Zhou, F., Owens, J. F., Edmundowicz, D., Kuller, L. H., & Matthews, K. A. (2005). A greater reduction in high-frequency heart rate variability to a psychological stressor is associated with subclinical coronary and aortic calcification in postmenopausal women. Psychosomatic Medicine, 67(4), 553–560. https://doi.org/10.1097/01.psy.0000170335.92770.7a First citation in articleCrossrefGoogle Scholar

  • Hauschildt, M., Peters, M. J., Moritz, S., & Jelinek, L. (2011). Heart rate variability in response to affective scenes in posttraumatic stress disorder. Biological Psychology, 88(2–3), 215–222. https://doi.org/10.1016/j.biopsycho.2011.08.004 First citation in articleCrossrefGoogle Scholar

  • Herbert, B. M., Pollatos, O., Flor, H., Enck, P., & Schandry, R. (2010). Cardiac awareness and autonomic cardiac reactivity during emotional picture viewing and mental stress. Psychophysiology, 47, 342–354. https://doi.org/10.1111/j.1469-8986.2009.00931.x First citation in articleCrossrefGoogle Scholar

  • Hjortskov, N., Rissén, D., Blangsted, A. K., Fallentin, N., Lundberg, U., & SØgaard, K. (2004). The effect of mental stress on heart rate variability and blood pressure during computer work. European Journal of Applied Physiology, 92(1–2), 84–89. https://doi.org/10.1007/s00421-004-1055-z First citation in articleCrossrefGoogle Scholar

  • Kirby, J. N., Doty, J. R., Petrocchi, N., & Gilbert, P. (2017). The current and future role of heart rate variability for assessing and training compassion. Frontiers in Public Health, 5, Article 40. https://doi.org/10.3389/fpubh.2017.00040 First citation in articleCrossrefGoogle Scholar

  • Kirschbaum, C., Pirke, K.-M., & Hellhammer, D. H. (1993). The “Trier social stress test” – A tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology, 28, 76–81. https://doi.org/10.1159/000119004 First citation in articleCrossrefGoogle Scholar

  • Kjellberg, A., & Magnusson, E. (1979). Physiological response patterns during “intake” and “rejection” tasks. Biological Psychology, 9(1), 63–76. https://doi.org/10.1016/0301-0511(79)90023-1 First citation in articleCrossrefGoogle Scholar

  • Laborde, S., Mosley, E., & Mertgen, A. (2018). Vagal tank theory: The three Rs of cardiac vagal control functioning – resting, reactivity, and recovery. Frontiers in Neuroscience, 12, Article 458. https://doi.org/10.3389/fnins.2018.00458 First citation in articleCrossrefGoogle Scholar

  • Lacey, B. C., & Lacey, J. I. (1974). Studies of heart rate and other bodily processes in sensorimotor behavior. In P. A. ObristA. H. BlackJ. BrenerL. V. DiCaraEds., Cardiovascular psychophysiology: Current issues in response mechanisms, biofeedback and methodology (pp. 538–564). Aldine Transaction. First citation in articleGoogle Scholar

  • Lang, P. J.Simons, R. F.Balaban, M.Simons, R. (Eds.). (2013). Attention and orienting: Sensory and motivational processes. Psychology Press. https://doi.org/10.4324/9780203726457 First citation in articleCrossrefGoogle Scholar

  • Lischke, A., Lemke, D., Neubert, J., Hamm, A. O., & Lotze, M. (2017). Inter-individual differences in heart rate variability are associated with inter-individual differences in mind-reading. Scientific Reports, 7(1), Article 11557. https://doi.org/10.1038/s41598-017-11290-1 First citation in articleCrossrefGoogle Scholar

  • Löw, A., Lang, P. J., Smith, J. C., & Bradley, M. M. (2008). Both predator and prey. Psychological Science, 19(9), 865–873. https://doi.org/10.1111/j.1467-9280.2008.02170.x First citation in articleCrossrefGoogle Scholar

  • Martinmäki, K., Rusko, H., Kooistra, L., Kettunen, J., & Saalasti, S. (2006). Intraindividual validation of heart rate variability indexes to measure vagal effects on hearts. American Journal of Physiology-Heart and Circulatory Physiology, 290(2), H640–H647. https://doi.org/10.1152/ajpheart.00054.2005 First citation in articleCrossrefGoogle Scholar

  • O’Brien, W. H., Haynes, S. N., & Mumby, P. B. (1998). Differences in cardiovascular recovery among healthy young adults with and without a parental history of hypertension. Journal of Psychophysiology, 12, 17–28. First citation in articleGoogle Scholar

  • Obrist, P. (1981). Cardiovascular psychophysiology: A perspective. Plenum. First citation in articleCrossrefGoogle Scholar

  • Obrist, P. A. (1963). Skin resistance levels and galvanic skin response: Unilateral differences. Science, 139(3551), 227–228. https://doi.org/10.1126/science.139.3551.227 First citation in articleCrossrefGoogle Scholar

  • Palomba, D., Sarlo, M., Angrilli, A., Mini, A., & Stegagno, L. (1999). Cardiac responses associated with affective processing of unpleasant film stimuli. International Journal of Psychophysiology, 36(1), 45–57. First citation in articleCrossrefGoogle Scholar

  • Petrowski, K., Wichmann, S., Siepmann, T., Wintermann, G. B., Bornstein, S. R., & Siepmann, M. (2017). Effects of mental stress induction on heart rate variability in patients with panic disorder. Applied Psychophysiology and Biofeedback, 42(2), 85–94. First citation in articleCrossrefGoogle Scholar

  • Porges, S. W. (2007). The polyvagal perspective. Biological Psychology, 74(2), 116–143. https://doi.org/10.1016/j.biopsycho.2006.06.009 First citation in articleCrossrefGoogle Scholar

  • Porges, S. W. (2011). The Norton series on interpersonal neurobiology. The polyvagal theory: Neurophysiological foundations of emotions, attachment, communication, and self-regulation. W.W. Norton. First citation in articleGoogle Scholar

  • Porges, S. W. (2021). Polyvagal safety: Attachment, communication, self-regulation. W.W. Norton. First citation in articleGoogle Scholar

  • Pulopulos, M. M., Vanderhasselt, M. A., & de Raedt, R. (2018). Association between changes in heart rate variability during the anticipation of a stressful situation and the stress-induced cortisol response. Psychoneuroendocrinology, 94, 63–71. https://doi.org/10.1016/j.psyneuen.2018.05.004 First citation in articleCrossrefGoogle Scholar

  • Schuler, J., & O’Brien, W. H. (1997). Cardiovascular recovery from stress and hypertension risk: A meta-analytic review. Psychophysiology, 31, 649–659. https://doi.org/10.1111/j.1469-8986.1997.tb02141.x First citation in articleCrossrefGoogle Scholar

  • Serganian, P., Szabo, A., & Brown, T. G. (1997). The effect of vocalization on the heart rate response to mental arithmetic. Physiology and Behavior, 62, 221–224. https://doi.org/10.1016/S0031-9384(97)00102-9 First citation in articleCrossrefGoogle Scholar

  • Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms. Frontiers in Public Health, 5, Article 258. https://doi.org/10.3389/fpubh.2017.00258 First citation in articleCrossrefGoogle Scholar

  • Shenhav, A., & Mendes, W. B. (2014). Aiming for the stomach and hitting the heart: Dissociable triggers and sources for disgust reactions. Emotion, 14(2), 301–309. https://doi.org/10.1037/a0034644 First citation in articleCrossrefGoogle Scholar

  • Sloan, R. P., Korten, J. B., & Myers, M. M. (1991). Components of heart rate reactivity during mental arithmetic with and without speaking. Physiology and Behavior, 50, 1039–1045. https://doi.org/10.1016/0031-9384(91)90434-P First citation in articleCrossrefGoogle Scholar

  • Stellar, J. E., Cohen, A., Oveis, C., & Keltner, D. (2015). Affective and physiological responses to the suffering of others: Compassion and vagal activity. Journal of Personality and Social Psychology, 108(4), 572–585. https://doi.org/10.1037/pspi0000010 First citation in articleCrossrefGoogle Scholar

  • Tarvainen, M. P., Niskanen, J. P., Lipponen, J. A., Ranta-Aho, P. O., & Karjalainen, P. A. (2014). Kubios HRV – Heart rate variability analysis software. Computer Methods and Programs in Biomedicine, 113, 210–220. First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F., ÅHs, F., Fredrikson, M., Sollers, J. J., & Wager, T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neuroscience & Biobehavioral Reviews, 36(2), 747–756. https://doi.org/10.1016/j.neubiorev.2011.11.009 First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F., Hansen, A. L., Saus-Rose, E., & Johnson, B. J. (2009). Heart rate variability, prefrontal neural function, and cognitive performance: The neurovisceral integration perspective on self-regulation, adaptation, and health. Annals of Behavioral Medicine, 37, 141–153. First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F., Sollers, J. J., Ruiz-Padial, E., & Vila, J. (2002). Estimating respiratory frequency from autoregressive spectral analysis of heart period. IEEE Engineering in Medicine and Biology Magazine, 21(4), 41–45. https://doi.org/10.1109/MEMB.2002.1032638 First citation in articleCrossrefGoogle Scholar

  • Vila, J., Guerra, P., Munoz, M. A., Vico, C., Viedma-del Jesus, M. I., Delgado, L. C., Perakakis, P., Kley, E., Mata, J. M., & Rodriguez, S. (2007). Cardiac defense: From attention to action. International Journal of Psychophysiology, 66, 169–182. https://doi.org/10.1016/j.ijpsycho.2007.07.004 First citation in articleCrossrefGoogle Scholar

  • Wagner, J., Lampert, R., Tennen, H., & Feinn, R. (2015). Exposure to discrimination and heart rate variability reactivity to acute stress among women with diabetes. Stress and Health, 31(3), 255–262. First citation in articleCrossrefGoogle Scholar

  • Whited, A., Larkin, K. T., & Whited, M. (2014). Effectiveness of emWave biofeedback in improving heart rate variability reactivity to and recovery from stress. Applied Psychophysiology and Biofeedback, 39(2), 75–88. First citation in articleCrossrefGoogle Scholar

  • Winzeler, K., Voellmin, A., Hug, E., Kirmse, U., Helmig, S., Princip, M., & Wilhelm, F. H. (2016). Adverse childhood experiences and autonomic regulation in response to acute stress: The role of the sympathetic and parasympathetic nervous systems. Anxiety, Stress, & Coping, 30(2), 145–154. First citation in articleCrossrefGoogle Scholar

  • Woody, A., Hamilton, K., Livitz, I. E., Figueroa, W. S., & Zoccola, P. M. (2017). Buccal telomere length and its associations with cortisol, heart rate variability, heart rate, and blood pressure responses to an acute social evaluative stressor in college students. Stress, 20(3), 249–257. First citation in articleCrossrefGoogle Scholar