Skip to main content
Published Online:https://doi.org/10.1027/1015-5759/a000400

Abstract. Gender differences in the numerical domain vary greatly according to the assessment method used. We suggest that strict time constraints, as employed on most numerical intelligence tests but not on mathematical competency tests, unduly increase the gender gap in measured numerical intelligence if the test focuses reasoning. Two studies were conducted. First, 666 11th and 12th graders were randomly assigned to speeded or nonspeeded versions of verbal, figural, and numerical reasoning tests. Extending the test time reduced gender differences in numerical but not in verbal and figural reasoning. To rule out ceiling effects and to test for potential motivational and emotional effects on test performance, a second sample of 542 students completed both a speeded and a nonspeeded numerical reasoning test as well as several motivational and emotional questionnaires. In the nonspeeded condition, girls increased their performance more than boys. This effect was especially strong for female students with medium and high performances and was largely but not fully explained by emotional and motivational factors. We conclude that girls are prevented from showing their actual potential on speeded numerical reasoning tests.

References

  • Ball, L. C., Cribbie, R. A., & Steele, J. R. (2013). Beyond gender differences: Using tests of equivalence to evaluate gender similarities. Psychology of Women Quarterly, 37, 147–154. doi: 10.1177/0361684313480483 First citation in articleCrossrefGoogle Scholar

  • Bridgeman, B., Cline, F., & Hessinger, J. (2004). Effect of extra time on verbal and quantitative GRE scores. Applied Measurement in Education, 17, 25–37. doi: 10.1207/s15324818ame1701_2 First citation in articleCrossrefGoogle Scholar

  • Bridgeman, B., Trapani, C., & Curley, E. (2003). Effect of fewer questions per section on SAT® I scores, (College Board Report No. 2003-2). Retrieved January 10, 2016, from http://files.eric.ed.gov/fulltext/ED562680.pdf First citation in articleGoogle Scholar

  • Briel, J. B., O’Neill, K. A., & Scheuneman, J. D. (1993). GRE technical manual. Princeton, NJ: Educational Testing Service. First citation in articleGoogle Scholar

  • Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. Cambridge, UK: Cambridge University Press. First citation in articleCrossrefGoogle Scholar

  • Covington, M. V., & Omelich, C. L. (1985). Item difficulty and test performance among high-anxious and low-anxious students. In H. M. van der PloegR. SchwarzerC. D. SpielbergerEds., Advances in test anxiety research (Vol. 5, pp. 127–136). Amsterdam: Lisse. First citation in articleGoogle Scholar

  • Eccles, J. S. (1994). Understanding women’s educational and occupational choices: Applying the Eccles et al. model of achievement-related choices. Psychology of Women Quarterly, 18, 585–609. doi: 10.1111/j.1471-6402.1994.tb01049.x First citation in articleCrossrefGoogle Scholar

  • Eccles, J. S., & Wigfield, A. (1995). In the mind of the achiever: The structure of adolescents’ academic achievement-related beliefs and self-perceptions. Personality and Social Psychology Bulletin, 21, 215–225. doi: 10.1177/0146167295213003 First citation in articleCrossrefGoogle Scholar

  • Frey, M. C., & Detterman, D. K. (2004). Scholastic assessment or g? The relationship between the scholastic assessment test and general cognitive ability. Psychological Science, 15, 373–378. doi: 10.1111/j.0956-7976.2004.00687.x First citation in articleCrossrefGoogle Scholar

  • Ganley, C. M., & Vasilyeva, M. (2014). The role of anxiety and working memory in gender differences in mathematics. Journal of Educational Psychology, 106, 105–120. doi: 10.1037/a0034099 First citation in articleCrossrefGoogle Scholar

  • Geary, D. C., Saults, S. J., Liu, F., & Hoard, M. K. (2000). Sex differences in spatial cognition, computational fluency, and arithmetical reasoning. Journal of Experimental Child Psychology, 77, 337–353. doi: 10.1006/jecp.2000.2594 First citation in articleCrossrefGoogle Scholar

  • Goldstein, D., Haldane, D., & Mitchell, C. (1990). Sex differences in visual-spatial ability: The role of performance factors. Memory & Cognition, 18, 546–550. First citation in articleCrossrefGoogle Scholar

  • Göttert, R., & Kuhl, J. (1980). AMS – Achievement Motives Scale von Gjesme und Nygard - Deutsche Fassung [AMS – German version]. In F. RheinbergS. KrugEds., Motivationsförderung im Schulalltag [Enhancement of motivation in the school context]. (pp. 194–200). Göttingen, Germany: Hogrefe. First citation in articleGoogle Scholar

  • Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of Psychology, 60, 549–576. doi: 10.1146/annurev.psych.58.110405.085530 First citation in articleCrossrefGoogle Scholar

  • Hill, K. T., & Eaton, W. O. (1977). The interaction of test anxiety and success-failure experiences in determining children’s arithmetic performance. Developmental Psychology, 13, 205–211. First citation in articleCrossrefGoogle Scholar

  • Hodapp, V., Laux, L., & Spielberger, C. D. (1982). Theorie und Messung der emotionalen und kognitiven Komponenten der Prüfungsangst [Theory and measurement of the emotional and cognitive test anxiety components]. Zeitschrift für Differentielle und Diagnostische Psychologie, 3, 169–184. First citation in articleGoogle Scholar

  • Hyde, J. S. (2005). The gender similarities hypothesis. The American Psychologist, 60, 581–592. doi: 10.1037/0003-066X.60.6.581 First citation in articleCrossrefGoogle Scholar

  • Hyde, J. S., Fennema, E., & Lamon, S. J. (1990). Gender differences in mathematics performance: A meta-analysis. Psychological Bulletin, 107, 139–155. First citation in articleCrossrefGoogle Scholar

  • Hyde, J. S., Lindberg, S. M., Linn, M. C., Ellis, A. B., & Williams, C. C. (2008). Diversity. Gender similarities characterize math performance. Science, 321, 494–495. doi: 10.1126/science.1160364 First citation in articleCrossrefGoogle Scholar

  • Kersting, M. (1996). Ost-West-Leistungsunterschiede in Berufseignungstests in Abhängigkeit von der kulturspezifischen Wirkung einiger Aufgabenmerkmale [East-west performance differences in personnel selection instruments depending on the culture-specific impact of some task characteristics]. Zeitschrift für Arbeits- und Organisationspsychologie, 40, 106–117. First citation in articleGoogle Scholar

  • Knapp, R. R. (1960). The effects of time limits on the intelligence test performance of Mexican and American subjects. Journal of Educational Psychology, 51, 14–20. doi: 10.1037/h0038366 First citation in articleCrossrefGoogle Scholar

  • Kuncel, N. R., Hezlett, S. A., & Ones, D. S. (2004). Academic performance, career potential, creativity, and job performance: Can one construct predict them all? Journal of Personality and Social Psychology, 86, 148–161. doi: 10.1037/0022-3514.86.1.148 First citation in articleCrossrefGoogle Scholar

  • Liepmann, D., Beauducel, A., Brocke, B., & Amthauer, A. (2007). Intelligence-Structure-Test [Intelligence-Structure-Test]. Göttingen, Germany: Hogrefe. First citation in articleGoogle Scholar

  • Lynn, R., & Irwing, P. (2008). Sex differences in mental arithmetic, digit span, and g defined as working memory capacity. Intelligence, 36, 226–235. doi: 10.1016/j.intell.2007.06.002 First citation in articleCrossrefGoogle Scholar

  • Matters, G., & Burnett, P. C. (2003). Psychological predictors of the propensity to omit short-response items on a high-stakes achievement test. Educational and Psychological Measurement, 63, 239–256. doi: 10.1177/0013164402250988 First citation in articleCrossrefGoogle Scholar

  • McNamara, T., & Roever, C. (2006). Psychometric approaches to fairness: Bias and DIF. Language Learning, 56, 81–128. doi: 10.1111/j.1467-9922.2006.00381.x First citation in articleCrossrefGoogle Scholar

  • National Mathematic Advisory Panel. (2008). Foundations for Success: The Final Report of the National Mathematics Advisory Panel. Washington, DC,: US Department of Education. First citation in articleGoogle Scholar

  • Onwuegbuzie, A. J., & Seaman, M. A. (1995). The effect of time constraints and statistics test anxiety on test performance in a statistics course. Journal of Experimental Education, 63, 115–124. First citation in articleCrossrefGoogle Scholar

  • Organisation for Economic Co-Operation, Development (OECD). (2005). Technical Report. Paris, France: OECD. First citation in articleGoogle Scholar

  • Organisation for Economic Co-Operation, Development (OECD). (2013). PISA 2012 Results: What Students Know and Can Do. Paris, France: OECD. First citation in articleGoogle Scholar

  • Pekkarinen, T. (2015). Gender differences in behaviour under competitive pressure: Evidence on omission patterns in university entrance examinations. Journal of Economic Behavior & Organization, 115, 94–110. doi: 10.1016/j.jebo.2014.08.007 First citation in articleCrossrefGoogle Scholar

  • Sackett, P. R., Borneman, M. J., & Connelly, B. S. (2008). High stakes testing in higher education and employment: Appraising the evidence for validity and fairness. The American Psychologist, 63, 215–227. doi: 10.1037/0003-066X.63.4.215 First citation in articleCrossrefGoogle Scholar

  • Schöne, C., Dickhäuser, O., Spinath, B., & Stiensmeier-Pelster, J. (2002). Skalen zur Erfassung des schulischen Selbstkonzepts – SESSKO [Scales measuring scholastic ability self-concepts]. Göttingen, Germany: Hogrefe. First citation in articleGoogle Scholar

  • Schwarzer R.Jerusalem M.Eds.. (1999). Skalen zur Erfassung von Lehrer- und Schülermerkmalen. Dokumentation der psychometrischen Verfahren im Rahmen der wissenschaftlichen Begleitung des Modellversuchs Selbstwirksame Schulen [Scales measuring teachers’ and students’ characteristics. Documentation of the psychometric measures used in the scientific evaluation of the pilot project self-efficient schools]. Berlin, Germany: Freie Universität Berlin. First citation in articleGoogle Scholar

  • Spelke, E. S. (2005). Sex differences in intrinsic aptitude for mathematics and science? A critical review. The American Psychologist, 60, 950–958. doi: 10.1037/0003-066X.60.9.950 First citation in articleCrossrefGoogle Scholar

  • Steinmayr, R., Beauducel, A., & Spinath, B. (2010). Do sex differences in a faceted model of fluid and crystallized intelligence depend on the method applied? Intelligence, 38, 101–110. doi: 10.1016/j.intell.2009.08.001 First citation in articleCrossrefGoogle Scholar

  • Steinmayr, R., Meißner, A., Weidinger, A. F., & Wirthwein, L. (2014). Academic Achievement. In L. H. MeyerEd., Oxford Bibliographies Online: Education (pp. 736–749). New York, NY: Oxford University Press. First citation in articleGoogle Scholar

  • Steinmayr, R., & Spinath, B. (2009). What explains boys’ stronger confidence in their intelligence? Sex Roles, 61. doi: 10.1007/s11199-009-9675-8 First citation in articleCrossrefGoogle Scholar

  • Steinmayr, R., & Spinath, B. (2010). Konstruktion und erste Validierung einer Skala zur Erfassung subjektiver schulischer Werte (SESSW) [Construction and the first validation of a scale assessing subjective scholastic task values]. Diagnostica, 56, 195–211. doi: 10.1026/0012-1924/a000023 First citation in articleLinkGoogle Scholar

  • Steinmayr, R., Wirthwein, L., & Schöne, C. (2014). Gender and numerical intelligence: Does motivation matter? Learning and Individual Differences, 32, 140–147. doi: 10.1016/j.lindif.2014.01.001 First citation in articleCrossrefGoogle Scholar

  • Tsui, J. M., & Maziocco, M. M. M. (2007). Effects of math anxiety and perfectionism on timed versus untimed math testing in mathematically gifted sixth graders. Roeper Review, 29, 132–139. doi: 10.1080/02783190709554397 First citation in articleCrossrefGoogle Scholar

  • Voyer, D. (2011). Time limits and gender differences on paper-and-pencil tests of mental rotation: A meta-analysis. Psychonomic Bulletin & Review, 18, 267–277. doi: 10.3758/s13423-010-0042-0 First citation in articleCrossrefGoogle Scholar

  • Voyer, D., & Voyer, S. D. (2014). Gender differences in scholastic achievement: A meta-analysis. Psychological Bulletin, 140, 1174–1204. doi: 10.1037/a0036620 First citation in articleCrossrefGoogle Scholar

  • Wai, J., Putallaz, M., & Makel, M. C. (2012). Studying intellectual outliers: Are there sex differences, and are the smart getting smarter? Current Directions in Psychological Science, 21, 382–390. doi: 10.1177/0963721412455052 First citation in articleCrossrefGoogle Scholar

  • Wang, M.-T., Eccles, J. S., & Kenny, S. (2013). Not lack of ability but more choice: Individual and gender differences in choice of careers in science, technology, engineering, and mathematics. Psychological Science, 24, 770–775. doi: 10.1177/0956797612458937 First citation in articleCrossrefGoogle Scholar

  • Wechsler, D. (2008). Wechsler Adult Intelligence Scale (4th ed.). San Antonio, TX: Pearson Assessment. First citation in articleGoogle Scholar

  • Wigfield, A., & Byrnes, J. P. (1999). Does math-fact retrieval explain sex differences in mathematical test performance? A commentary. Contemporary Educational Psychology, 24, 275–285. doi: 10.1006/ceps.1999.1008 First citation in articleCrossrefGoogle Scholar

  • Wilhelm, O., & Engle, R. W. (2005). Handbook of understanding and measuring intelligence. Thousand Oaks, CA: Sage. First citation in articleCrossrefGoogle Scholar