Skip to main content
Published Online:https://doi.org/10.1027/1016-9040.2.4.313

Neurocardiology has shown that the dynamic performance of the heart is strongly influenced by the brain, including the cerebral cortex. Neural control is mediated by sympathetic and parasympathetic fibers innervating the pacemaker, conductile, and contractile tissues of the heart. In this review, evidence is presented that autonomic control of the heart is lateralized, each brain side influencing cardiac activity in a different manner. Moreover, it is shown that asymmetries observed at the level of the cerebral hemispheres are characterized by different principles than asymmetries at the levels of the lower brain stem and the peripheral pathways. Findings on lateralized control of the heart are integrated into a general model of brain asymmetry, in which it is postulated that each hemisphere has a unique and comprehensive response system characterizing its cognitive, emotional, and physiological functioning.

References

References

  • Akselrod, S. Gordon, D. Ubel, F.A. Shannon, D.C. Barger, A.C. Cohen, R.J. (1981). Power spectrum analysis of heart rate fluctuation: A quantitative probe of beat-to-beat cardiovascular control. Science, 213, 220– 222 First citation in articleCrossrefGoogle Scholar

  • Barron, S.A. Rogovski, Z. Hemli, J. (1994). Autonomic consequences of cerebral hemisphere infarction. Stroke, 25, 113– 116 First citation in articleCrossrefGoogle Scholar

  • Berntson, G.G. Cacioppo, J.T. Quigley, K.S. (1993a). Respiratory sinus arrhythmia: Autonomic origins, physiological mechanisms, and psychophysiological implications. Psychophysiology, 30, 183– 196 1993-30146-001 First citation in articleCrossrefGoogle Scholar

  • Berntson, G.G. Cacioppo, J.T. Quigley, K.S. (1993b). Cardiac psychophysiology and autonomic space in humans: Empirical perspectives and conceptual implications. Psychological Bulletin, 114, 296– 322 1994-00865-001 First citation in articleCrossrefGoogle Scholar

  • Cacioppo, J.T. Berntson, G.G. Binkley, P.F. Quigley, K.S. Uchino, B.N. Fieldstone, A. (1994). Autonomic cardiac control. II. Noninvasive indices and basal response as revealed by autonomic blockades. Psychophysiology, 31, 586– 598 First citation in articleCrossrefGoogle Scholar

  • Caltagirone, C. Zoccolotti, P. Orginale, G. Daniele, A. Mammucari, A. (1989). Autonomic reactivity and facial expression of emotion in brain-damaged patients. In G. Gainotti & C. Caltagirone (Eds.), Emotions and the dual brain (pp. 204-221). Berlin: Springer-Verlag First citation in articleGoogle Scholar

  • Cechetto, D.F. Saper, C.B. (1990). Role of the cerebral cortex in autonomic function. In A.D. Loewy & K.M. Spyer (Eds.), Central regulation of autonomic functions (pp. 208-223). New York: Oxford University Press First citation in articleGoogle Scholar

  • Chai, C.Y. Wang, S.C. (1962). Localization of central cardiovascular control mechanism in lower brain stem of the cat. American Journal of Physiology, 202, 25– 30 First citation in articleGoogle Scholar

  • Davidson, R.J. (1995). Cerebral asymmetry, emotion, and affective style. In R.J. Davidson, & K. Hugdahl (Eds.), Brain asymmetry (pp. 361-387). Cambridge, MA: MIT Press First citation in articleGoogle Scholar

  • Davidson, R.J. Hugdahl, K. (1995). Brain asymmetry . Cambridge, MA: MIT Press First citation in articleGoogle Scholar

  • Fang, H.S. Wang, S.C. (1962). Cardioaccelerator and cardioaugmentor points in hypothalamus of the dog. American Journal of Physiology, 203, 147– 150 First citation in articleGoogle Scholar

  • Gainotti, G. (1989). The meaning of emotional disturbances resulting from unilateral brain injury. In G. Gainotti & C. Caltagirone (Eds.), Emotions and the dual brain (pp. 147-167). Berlin: Springer-Verlag First citation in articleGoogle Scholar

  • Gatti, P.J. Johnson, T.A. Massari, V.J. (1996). Can neurons in the nucleus ambiguus selectively regulate cardiac rate and atrioventricular conduction?. Journal of the Autonomic Nervous System, 57, 123– 127 First citation in articleCrossrefGoogle Scholar

  • Goldberg, J.M. Randall, W.C. (1973). Dromotropic effects of stellate stimulation on the AV node and internodal pathways. Proceedings of the Society for Experimental Biology and Medicine, 143, 623– 628 First citation in articleCrossrefGoogle Scholar

  • Hachinski, V.C. Oppenheimer, S.M. Wilson, J.X. Guirandon, C. Cechetto, D.F. (1992). Asymmetry of sympathetic consequences of experimental stroke. Archives of Neurology, 49, 697– 702 1997-04819-002 First citation in articleCrossrefGoogle Scholar

  • Hageman, G.R. Randall, W.C. Armour, J.A. (1975). Direct and reflex cardiac brady-dysrhythmias from small vagal nerve stimulations. American Heart Journal, 89, 338– 348 First citation in articleCrossrefGoogle Scholar

  • Hall, R.E. Livingston, R.B. Bloor, C.M. (1977). Orbital cortical influences on cardiovascular dynamics and myocardial structure in conscious monkeys. Journal of Neurosurgery, 46, 638– 647 First citation in articleCrossrefGoogle Scholar

  • Heilman, K.M. (1995). Attentional asymmetries. In R.J. Davidson & K. Hugdahl (Eds.), Brain asymmetry (pp. 217-234). Cambridge, MA: MIT Press First citation in articleGoogle Scholar

  • Hellige, J.B. (1995). Hemispheric asymmetry for components of visual information processing. In R.J. Davidson & K. Hugdahl (Eds.), Brain asymmetry (pp.99-121). Cambridge, MA: MIT Press First citation in articleGoogle Scholar

  • Henry, J.L. Calaresu, F.R. (1974). Pathways from medullary nuclei to spinal cardioacceleratory neurons in the cat. Experimental Brain Research, 20, 505– 514 First citation in articleGoogle Scholar

  • Hori, T. Katafuchi, T. Take, S. Shimizu, N. Niijima, A. (1995). The autonomic nervous system as a communication channel between the brain and the immune system. Neuroimmunomodulation, 2, 203– 215 First citation in articleCrossrefGoogle Scholar

  • Hugdahl, K. (1995a). Classical conditioning and implicit learning: The right hemisphere hypothesis. In R.J. Davidson & K. Hugdahl (Eds.), Brain asymmetry (pp. 235-267). Cambridge, MA: MIT Press First citation in articleGoogle Scholar

  • Hugdahl, K. (1995b). Psychophysiology — The mind-body problem . Cambridge, MA: Harvard University Press First citation in articleGoogle Scholar

  • Hugdahl, K. (1996). Cognitive influences on human autonomic nervous system function. Current Opinion in Neurobiology, 6, 252– 258 First citation in articleCrossrefGoogle Scholar

  • Hugdahl, K. Franzon, M. Andersson, B. Walldebo, G. (1983). Heart-rate responses (HRR) to lateralized visual stimuli. Pavlovian Journal of Biological Science, 18, 186– 198 1984-22452-001 First citation in articleGoogle Scholar

  • Kamath, M.V. Fallen, E.L. (1993). Power spectral analysis of heart rate variability: A noninvasive signature of cardiac autonomic function. Critical Reviews in Biomedical Engineering, 21, 245– 311 First citation in articleGoogle Scholar

  • Kang, D.H. Davidson, R.J. Coe, C.L. Wheeler, R.E. Tomarken, A.J. Ershler, W.B. (1991). Frontal brain asymmetry and immune function. Behavioral Neuroscience, 105, 860– 869 1992-18853-001 First citation in articleCrossrefGoogle Scholar

  • Korpelainen, J.T. Sotaniemi, K.A. Huikuri, H.V. Myllylä, V.V. (1996). Abnormal heart rate variability as a manifestation of autonomic dysfunction in hemispheric brain infarction. Stroke, 27, 2059– 2063 First citation in articleCrossrefGoogle Scholar

  • Lane, R.D. Jennings, J.R. (1995). Hemispheric asymmetry, autonomic asymmetry, and the problem of sudden cardiac death. In R.J. Davidson & K. Hugdahl (Eds.), Brain asymmetry (pp. 271-304). Cambridge, MA: MIT Press First citation in articleGoogle Scholar

  • Lane, R.D. Novelly, R. Cornell, C. Zeitlin, S. Schwartz, G.E. (1989). Asymmetrical hemispheric control of heart rate. Psychophysiology, 25, 464 First citation in articleGoogle Scholar

  • Levy, M.N. Martin, P.J. (1979). Neural control of the heart. In Handbook of physiology, Sect. 2: The cardiovascular system, vol. 1 (pp. 581-620). Bethesda, MD: American Physiological Society First citation in articleGoogle Scholar

  • Levy, M.N. Warner, M.R. (1994). Parasympathetic effects of cardiac function. In J.A. Armour & J.L. Ardell (Eds.), Neurocardiology (pp. 53-76). New York: Oxford University Press First citation in articleGoogle Scholar

  • Litvack, D.A. Oberlander, T.F. Carney, L.H. Saul, J.P. (1995). Time and frequency domain methods for heart rate variability analysis: A methodological comparison. Psychophysiology, 32, 492– 504 First citation in articleCrossrefGoogle Scholar

  • Loewy, A.D. (1990). Central autonomic pathways. In A.D. Loewy & K.M. Spyer (Eds.), Central regulation of autonomic functions (pp. 88-103). New York: Oxford University Press First citation in articleGoogle Scholar

  • Malik, M. Camm, A.J. (1995). Heart rate variability . Armonk, NY: Futura Publishing Company First citation in articleGoogle Scholar

  • Malliani, A. Pagani, M. Lombardi, F. Cerutti, S. (1991). Cardiovascular neural regulation explored in the frequency domain. Circulation, 84, 1482– 1492 First citation in articleCrossrefGoogle Scholar

  • Massari, V.J. Johnson, T.A. Gatti, P.J. (1995). Cardiotopic organization of the nucleus ambiguus? An anatomical and physiological analysis of neurons regulating atrioventricular conduction. Brain Research, 679, 227– 240 First citation in articleCrossrefGoogle Scholar

  • Mitrani, R.D. Zipes, D.P. (1994). Clinical neurocardiology: arrhythmias. In J.A. Armour & J.L. Ardell (Eds.), Neurocardiology (pp. 365-395). New York: Oxford University Press First citation in articleGoogle Scholar

  • Mizeres, N.J. (1958). The origin and course of the cardioaccelerator fibers in the dog. Anatomical Record, 132, 261– 279 First citation in articleCrossrefGoogle Scholar

  • Naver, H.K. Blomstrand, C. Wallin, G. (1996). Reduced heart rate variability after right-sided stroke. Stroke, 27, 247– 251 First citation in articleCrossrefGoogle Scholar

  • Oppenheimer, S.M. Gelb, A. Girvin, J.P. Hachinski, V.C. (1992). Cardiovascular effects of human insular cortex stimulation. Neurology, 42, 1727– 1732 First citation in articleCrossrefGoogle Scholar

  • Oppenheimer, S.M. Hopkins, D.A. (1994). Suprabulbar neuronal regulation of the heart. In J.A. Armour & J.L. Ardell (Eds.), Neurocardiology (pp. 309-341). New York: Oxford University Press First citation in articleGoogle Scholar

  • Oppenheimer, S.M. Kedem, G. Martin, W.M. (1996). Left-insular cortex lesions perturb cardiac autonomic tone in humans. Clinical Autonomic Research, 6, 131– 140 First citation in articleCrossrefGoogle Scholar

  • Oppenheimer, S.M. Wilson, J.X. Guirandon, C. Cechetto, D.F. (1991). Insular cortex stimulation produces lethal cardiac arrhythmias: A mechanism of sudden death?. Brain Research, 550, 115– 121 First citation in articleCrossrefGoogle Scholar

  • Porges, S.W. (1985). Method and apparatus for evaluating rhythmic oscillations in aperiodic physiological response systems . (U.S. Patent Number 4510944). Washington, DC: U.S. Patent Office First citation in articleGoogle Scholar

  • Porges, S.W. (1995). Orienting in a defensive world: mammalian modifications of our evolutionary heritage. A polyvagal theory. Psychophysiology, 32, 301– 318 1996-92337-001 First citation in articleCrossrefGoogle Scholar

  • Randall, W.C. (1977). Sympathetic control of the heart. In W.C. Randall (Ed.), Neural regulation of the heart (pp. 43-94). New York: Oxford University Press First citation in articleGoogle Scholar

  • Renoux, G. Bizière, K. Renoux, M. Guillaumin, J.M. (1983). The production of T-cell-inducing factors in mice is controlled by the brain neocortex. Scandinavian Journal of Immunology, 17, 45– 50 First citation in articleCrossrefGoogle Scholar

  • Rosen, A.D. Gur, R.C. Sussman, N. Gur, R.E. Hurtig, H. (1982). Hemispheric asymmetry in the control of heart rate. Abstracts of Social Neuroscience, 8, 917 First citation in articleGoogle Scholar

  • Sander, D. Klingelhöfer, J. (1995). Changes of circadian blood pressure patterns and cardiovascular parameters indicate lateralization of sympathetic activation following hemispheric brain infarction. Journal of Neurology, 242, 313– 318 First citation in articleCrossrefGoogle Scholar

  • Schlack, W. Thämer, V. (1996). Unilateral changes of sympathetic tone to the heart impair left ventricular function. Acta Anaesthesiologica Scandinavica, 40, 262– 271 First citation in articleCrossrefGoogle Scholar

  • Shapoval, L.N. Sagach, V.F. Pobegailo, L.S (1991). Chemosensitive ventrolateral medulla in the cat: The fine structure and GABA-induced cardiovascular effects. Journal of the Autonomic Nervous System, 36, 159– 172 First citation in articleCrossrefGoogle Scholar

  • Sherwood, A. Allen, M.T. Fahrenberg, J. Kelsey, R.M. Lovallo, W.R. van Doornen, L.J.P. (1990). Methodological guidelines for impedance cardiography. Psychophysiology, 27, 1– 23 First citation in articleCrossrefGoogle Scholar

  • Shipley, M.T. (1982). Insular cortex projection to the nucleus of the solitary tract and brain stem visceromotor regions in the mouse. Brain Research Bulletin, 8, 139– 148 1982-27542-001 First citation in articleCrossrefGoogle Scholar

  • Shipley, M.T. Sanders, M.S. (1982). Special senses are really special: Evidence for a reciprocal, bilateral pathway between insular cortex and nucleus parabrachialis. Brain Research Bulletin, 8, 493– 501 1983-05108-001 First citation in articleCrossrefGoogle Scholar

  • Spence, S. Shapiro, D. Zaidel, E. (1996). The role of the right hemisphere in the physiological and cognitive components of emotional processing. Psychophysiology, 33, 112– 122 1996-03027-002 First citation in articleCrossrefGoogle Scholar

  • Talman, W.T. (1985). Cardiovascular regulation and lesions of the central nervous system. Annals of Neurology, 18, 1– 12 First citation in articleCrossrefGoogle Scholar

  • Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996). Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Circulation, 93, 1043– 1065 First citation in articleCrossrefGoogle Scholar

  • Terreberry, R.R. Neafsey, E.J. (1983). Rat medial frontal cortex: A visceral motor region with a direct projection to the solitary nucleus.. Brain Research, 278, 245– 249 1984-19716-001 First citation in articleCrossrefGoogle Scholar

  • Thompson, M.E. Felsten, G. Yavorsky, J. Natelson, B.H. (1987). Differential effect of stimulation of nucleus ambiguus on atrial and ventricular rates.. American Journal of Physiology, 253, R150– R157 First citation in articleGoogle Scholar

  • Walker, B.B. Sandman, C.A. (1979). Human visual evoked responses are related to heart rate. Journal of Comparative and Physiological Psychology, 93, 717– 729 1980-29846-001 First citation in articleCrossrefGoogle Scholar

  • Wittling, W. (1990). Psychophysiological correlates of human brain asymmetry: Blood pressure changes during lateralized presentation of an emotionally laden film. Neuropsychologia, 28, 457– 470 1991-00563-001 First citation in articleCrossrefGoogle Scholar

  • Wittling, W. (1995). Brain asymmetry in the control of autonomic-physiologic activity. In R.J. Davidson & K. Hugdahl (Eds.), Brain asymmetry (pp. 305-357). Cambridge, MA: MIT Press First citation in articleGoogle Scholar

  • Wittling, W. (1996). Brain asymmetry in the control of autonomic nervous activity and emotional processing . Paper presented at the Wenner-Gren Foundations International Symposium “Is there a neurobiology of love?”. Stockholm First citation in articleGoogle Scholar

  • Wittling, W. (1997). The right hemisphere and the human stress response. In B. Folkow, T. Schmidt, & K. Uvnäs-Moberg (Eds.), Stress, health, and the social environment. James P. Henry's integrative ethological approach to medicine reflected by recent research in humans and animals. in memory of a great 20th century physiologist (Acta Physiologica Scandinavica, Supplement), 640, pp. 55-59. Göteborg: Blackwell Science First citation in articleGoogle Scholar

  • Wittling, W. Block, A. Genzel, S. Schweiger, E. in press Hemisphere asymmetry in parasympathetic control of the heart. Neuropsychologia, First citation in articleGoogle Scholar

  • Wittling, W. Block, A. Schweiger, E. Genzel, S. in press Hemisphere asymmetry in neural control of the human myocardium. Brain Cognition, First citation in articleGoogle Scholar

  • Wittling, W. Pflüger, M. (1990). Neuroendocrine hemisphere asymmetries: Salivary cortisol secretion during lateralized viewing of emotion-related and neutral films. Brain and Cognition, 14, 243– 265 1991-14634-001 First citation in articleCrossrefGoogle Scholar

  • Wittling, W. Roschmann, R. (1993). Emotion-related hemisphere asymmetry: Subjective emotional responses to laterally presented films. Cortex, 29, 431– 448 1994-12581-001 First citation in articleCrossrefGoogle Scholar

  • Wittling, W. Schweiger, E. (1993a). Neuroendocrine brain asymmetry and physical complaints. Neuropsychologia, 31, 591– 608 1994-02369-001 First citation in articleCrossrefGoogle Scholar

  • Wittling, W. Schweiger, E. (1993b). Alterations of neuroendocrine brain asymmetry: A neural risk factor affecting physical health. Neuropsychobiology, 28, 25– 29 1994-20478-001 First citation in articleCrossrefGoogle Scholar

  • Yokoyama, K. Jennings, R. Ackles, P. Hood, B.S. Boller, F. (1987). Lack of heart rate changes during attention-demanding tasks after right hemisphere lesions. Neurology, 37, 624– 630 1988-20732-001 First citation in articleCrossrefGoogle Scholar

  • Yoon, B.W. Morillo, C.A. Cechetto, D.F. Hachinski, V. (1997). Cerebral hemispheric lateralization in cardiac autonomic control. Archives of Neurology, 54, 741– 744 1997-04819-006 First citation in articleCrossrefGoogle Scholar

  • Zamrini, E.Y. Meador, K.J. Loring, D.W. Nichols, F.T. Lee, G.P. Figueroa, R.E. Thompson, W.O. (1990). Unilateral cerebral inactivation produces differential left/right heart rate responses. Neurology, 40, 1408– 1411 First citation in articleCrossrefGoogle Scholar