Skip to main content
Original Article

Intelligence Differentiation in Early Childhood

Published Online:https://doi.org/10.1027/1614-0001/a000049

According to the age differentiation hypothesis, cognitive abilities become more differentiated with increasing age during childhood. Using data from the German standardization of the SON-R 2½–7 intelligence test, we examined age-related differentiation of cognitive abilities from age 2½ to age 7. The SON-R 2½–7 is a nonverbal intelligence test for children and consists of six subtests. SON-R 2½–7 supposedly has a two-factorial structure, with a reasoning and a performance factor. We used age-weighted measurement models to describe the age gradients of model parameter estimates. In line with the differentiation hypothesis, we observed a decrease in the correlation between both factors with increasing age. We tested the significance of this observed decrease using a permutation test. Participants were allocated age randomly in 1,000 datasets. Age-weighted measurement models were estimated to observe the age gradients of the correlation between the two factors in these datasets. The results of the permutation test show that the decrease in the correlation observed in the real dataset is significant but of small magnitude. The findings provide some support for intelligence differentiation with increasing childhood age.

References

  • Balinsky, B. (1941). An analysis of the mental factors of various age groups from nine to sixty. Genetic Psychology Monographs, 23, 191–234. First citation in articleGoogle Scholar

  • Baltes, P. B., Cornelius, S. W. , Spiro, A. , Nesselroade, J. R., Willis, S. L. (1980). Integration vs. differentiation of fluid-crystallized intelligence in old age. Developmental Psychology, 16, 625–635. First citation in articleCrossrefGoogle Scholar

  • Bayley, N. (1955). On the growth of intelligence. American Psychologist, 10, 805–818. First citation in articleCrossrefGoogle Scholar

  • Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238–246. First citation in articleCrossrefGoogle Scholar

  • Bickley, P. G., Keith, T. Z., Wolfle, L. M. (1995). The three-stratum theory of cognitive abilities: Test of the structure of intelligence across the lifespan. Intelligence, 20, 309–328. First citation in articleCrossrefGoogle Scholar

  • Burt, C. (1954). The differentiation of intellectual ability. British Journal of Educational Psychology, 24, 76–90. First citation in articleCrossrefGoogle Scholar

  • Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. New York: Cambridge University Press. First citation in articleCrossrefGoogle Scholar

  • Cattell, R. B. (1971). Abilities: Their structure, growth and action. Boston, MD: Houghton Mifflin. First citation in articleGoogle Scholar

  • Cattell, R. B. (1987). Intelligence: Its structure, growth, and action. Amsterdam: North-Holland. First citation in articleGoogle Scholar

  • Deary, I. J., Egan, V., Gibson, G. J. , Austin, E. J., Brand, C. R. , Kellaghan, T. (1996). Intelligence and the differentiation hypothesis. Intelligence, 23, 105–132. First citation in articleGoogle Scholar

  • Fan, X. , & Sivo, S. (2007). Sensitivity of fit indexes to misspecified structural or measurement model components: Rationale of two-index strategy revisited. Structural Equation Modeling, 12, 343–367. First citation in articleCrossrefGoogle Scholar

  • Filella, J. F. (1960). Educational and sex differences in the organization of abilities in technical and academic students in Colombia, South America. Genetic Psychology Monographs, 61, 115–163. First citation in articleGoogle Scholar

  • Garrett, H. E. (1946). A developmental theory of intelligence. American Psychologist, 1, 372–378. First citation in articleCrossrefGoogle Scholar

  • Gasser, T. , Gervini, D. , Molinari, L. (2004). Kernel estimation, shape-invariant modeling and structural analysis. In R. Hauspie N. Cameron L. Molinari, Eds., Methods in human growth research (pp. 179–204). Cambridge: Cambridge University Press. First citation in articleCrossrefGoogle Scholar

  • Grob, A. , Meyer, C. S., Hagmann-von Arx, P. (2009). Intelligence and Development Scales (IDS). Bern: Huber. First citation in articleGoogle Scholar

  • Hildebrandt, A., Wilhelm, O. , Robitzsch, A. (2009). Complementary and competing factor analytic approaches for the investigation of measurement invariance. Review of Psychology, 16, 87–102. First citation in articleGoogle Scholar

  • Horn, J. L., Cattell, R. B. (1966). Refinement and test of the theory of fluid and crystallized general intelligences. Journal of Educational Psychology, 57, 253–270. First citation in articleCrossrefGoogle Scholar

  • Jäger, A. O. (1982). Mehrmodale Klassifikation von Intelligenzleistungen: Experimentell kontrollierte Weiterentwicklung eines deskriptiven Intelligenzstrukturmodells [Multimodal classification of intelligence tests: Experimentally controlled development of a descriptive model of intelligence structure]. Diagnostica, 28, 195–225. First citation in articleGoogle Scholar

  • Jäger, A. O. (1984). Intelligenzstrukturforschung: Konkurrierende Modelle, neue Entwicklungen, Perspektiven [Intelligence structure research: Competing models, new developments, perspectives]. Psychologische Rundschau, 35, 21–35. First citation in articleGoogle Scholar

  • Juan-Espinosa, M., Garcia, L. F. , Colom, R. , & Abad, F. J. (2000). Testing the age-related differentiation hypothesis through the Wechsler’s scales. Personality and Individual Differences, 29, 1069–1075. First citation in articleGoogle Scholar

  • Li, S.-C. , Lindenberger, U., Hommel, B. , Aschersleben, G., Prinz, W. , Baltes, P. B. (2004). Lifespan transformations in the couplings of mental abilities and underlying cognitive processes. Psychological Science, 15, 155–163. First citation in articleCrossrefGoogle Scholar

  • Lienert, G. A., Faber, C. (1963). Über die Faktorenstruktur des HAWIK auf verschiedenen Alters- und Intelligenzniveaus [On the factor structure of the HAWIK at various levels of age and intelligence]. Diagnostica, 9, 3–11. First citation in articleGoogle Scholar

  • Little, T. D., Slegers, D. W., Card, N. A. (2006). A nonarbitrary method of identifying and scaling latent variables in SEM and MACS models. Structural Equation Modeling, 13, 59–72. First citation in articleCrossrefGoogle Scholar

  • McDonald, R. P. (1999). Test theory: A unified treatment. Mahwah, NJ: Erlbaum. First citation in articleGoogle Scholar

  • McGrew, K. S. (2009). CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research. Intelligence, 37, 1–10. First citation in articleCrossrefGoogle Scholar

  • McGrew, K. , & Flanagan, D. (1998). The Intelligence Test Desk Reference: Gf-Gc cross-battery assessment. Boston: Allyn & Bacon. First citation in articleGoogle Scholar

  • Muthén, L. K. , Muthén, B. O. (1998–2007). Mplus user’s guide (5th ed.). Los Angeles, CA: Muthén and Muthén. First citation in articleGoogle Scholar

  • Nesselroade, J. R., Thompson, W. W. (1995). Selection and related threats to group comparisons: An example comparing factorial structures of higher and lower ability groups of adult twins. Psychological Bulletin, 117, 271–284. First citation in articleCrossrefGoogle Scholar

  • Reinert, G. (1970). Comparative factor analytic studies of intelligence through the human life-span. In L. R. Goulet P. B. Baltes, Eds., Life-span developmental psychology: Research and theory (pp. 468–485). New York: Academic Press. First citation in articleCrossrefGoogle Scholar

  • Shing, Y. L., Lindenberger, U. , Diamond, A. , Li, S.-C. , & Davidson, M. S. (2010). Memory maintenance and inhibitory control differentiate from early childhood to adolescence. Developmental Neuropsychology, 35, 679–697. First citation in articleCrossrefGoogle Scholar

  • Snijders, J. T., Tellegen, P. J. , Laros, J. A. (1997). Snijders-Oomen Nonverbaler Intelligenztest SON-R 5.5–17 [Snijders-Oomen nonverbal intelligence test SON-R 5.5–17]. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Snijders-Oomen, A. W. M. (1943). Intelligentieonderzoek van doofstomme kinderen: een nieuwe testschaal. Proefschrift [Intelligence assessment for children with hearing and speaking impairments: A new test scale]. Nijmegen: Berkhout. First citation in articleGoogle Scholar

  • Spearman, C. (1927). The abilities of man. London: Macmillan. First citation in articleGoogle Scholar

  • Steiger, J. H. (1990). Structural model evaluation and modification: An interval estimation approach. Multivariate Behavioral Research, 25, 173–180. First citation in articleCrossrefGoogle Scholar

  • Tellegen, P. J., Laros, J. A. , Petermann, F. (2007). Snijders-Oomen Nonverbaler Intelligenztest von 2½ bis 7 Jahren (SON-R 2½– 7). Handanweisung und deutsche Normen (2. veränd. Aufl.) [Snijders-Oomen nonverbal intelligence test for 2½- to 7-year-olds. Manual and German standardization (2nd ed.)]. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Tideman, E. , Gustafsson, J. E. (2004). Age-related differentiation of cognitive abilities in ages 3–7. Personality and Individual Differences, 36, 1965–1974. First citation in articleCrossrefGoogle Scholar

  • Tucker-Drob, E. M. (2009). Differentiation of cognitive abilities across the lifespan. Developmental Psychology, 45, 1097–1118. First citation in articleCrossrefGoogle Scholar

  • Tucker-Drob, E. M., Salthouse, T. A. (2008). Adult age trends in the relations among cognitive abilities. Psychology and Aging, 23, 453–460. First citation in articleCrossrefGoogle Scholar