Skip to main content
Research Article

Investigating Deviance Distraction and the Impact of the Modality of the To-Be-Ignored Stimuli

Published Online:https://doi.org/10.1027/1618-3169/a000390

Abstract. It has been suggested that deviance distraction is caused by unexpected sensory events in the to-be-ignored stimuli violating the cognitive system’s predictions of incoming stimuli. The majority of research has used methods where the to-be-ignored expected (standards) and the unexpected (deviants) stimuli are presented within the same modality. Less is known about the behavioral impact of deviance distraction when the to-be-ignored stimuli are presented in different modalities (e.g., standard and deviants presented in different modalities). In three experiments using cross-modal oddball tasks with mixed-modality to-be-ignored stimuli, we examined the distractive role of unexpected auditory deviants presented in a continuous stream of expected standard vibrations. The results showed that deviance distraction seems to be dependent upon the to-be-ignored stimuli being presented within the same modality, and that the simplest omission of something expected; in this case, a standard vibration may be enough to capture attention and distract performance.

References

  • Bendixen, A., SanMiguel, I. & Schröger, E. (2012). Early electrophysiological indicators for predictive processing in audition: A review. International Journal of Psychophysiology, 83, 120–131. https://doi.org/10.1016/j.ijpsycho.2011.08.003 First citation in articleCrossref MedlineGoogle Scholar

  • Berti, S. (2008). Cognitive control after distraction: Event-related brain potentials (ERPs) dissociate between different processes of attentional allocation. Psychophysiology, 45, 608–620. https://doi.org/10.1111/j.1469-8986.2008.00660.x First citation in articleCrossref MedlineGoogle Scholar

  • Berti, S. (2013). The role of auditory transient and deviance processing in distraction of task performance: A combined behavioral and event-related brain potential study. Frontiers in Human Neuroscience, 7, 352. https://doi.org/10.3389/fnhum.2013.00352 First citation in articleCrossref MedlineGoogle Scholar

  • Berti, S., Roeber, U. & Schröger, E. (2004). Bottom-up influences on working memory: Behavioral and electrophysiological distraction varies with distractor strength. Experimental Psychology, 51, 249–257. https://doi.org/10.1027/1618-3169.51.4.249 First citation in articleLinkGoogle Scholar

  • Berti, S. & Schröger, E. (2001). A comparison of auditory and visual distraction effects: Behavioral and event-related indices. Cognitive Brain Research, 10, 265–273. https://doi.org/10.1016/S0926-6410(00)00044-6 First citation in articleCrossref MedlineGoogle Scholar

  • Berti, S. & Schröger, E. (2003). Working memory controls involuntary attention switching: Evidence from an auditory distraction paradigm. European Journal of Neuroscience, 17, 1119–1122. https://doi.org/10.1046/j.1460-9568.2003.02527.x First citation in articleCrossref MedlineGoogle Scholar

  • Boll, S. & Berti, S. (2009). Distraction of task-relevant information processing by irrelevant changes in auditory, visual, and bimodal stimulus features: A behavioral and event-related potential study. Psychophysiology, 46, 645–654. https://doi.org/10.1111/j.1469-8986.2009.00803.x First citation in articleCrossref MedlineGoogle Scholar

  • Colin, C., Radeau, M., Soquet, A. & Deltenre, P. (2004). Generalization of the generation of an MMN by illusory McGurk percepts: Voiceless consonants. Clinical Neurophysiology, 115, 1989–2000. https://doi.org/10.1016/j.clinph.2004.03.027 First citation in articleCrossref MedlineGoogle Scholar

  • Colin, C., Radeau, M., Soquet, A., Demolin, D., Colin, F. & Deltenre, P. (2002). Mismatch negativity evoked by the McGurk-MacDonald effect: A phonetic representation within short-term memory. Clinical Neurophysiology, 113, 495–506. https://doi.org/10.1016/S1388-2457(02)00024-X First citation in articleCrossref MedlineGoogle Scholar

  • Cousineau, D. (2005). Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson’s method. Tutorials in Quantitative Methods for Psychology, 1, 42–45. https://doi.org/10.20982/tqmp.01.1.p042 First citation in articleCrossrefGoogle Scholar

  • Escera, C., Alho, K., Winkler, I. & Näätänen, R. (1998). Neural mechanisms of involuntary attention to acoustic novelty and change. Journal of Cognitive Neuroscience, 10, 590–604. https://doi.org/10.1162/089892998562997 First citation in articleCrossref MedlineGoogle Scholar

  • Faul, F., Erdfelder, E., Lang, A.-G. & Buchner, A. (2007). G*Power: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191. https://doi.org/10.3758/BF03193146 First citation in articleCrossref MedlineGoogle Scholar

  • Friedman, D., Cycowicz, Y. M. & Gaeta, H. (2001). The novelty P3: An event-related brain potential (ERP) sign of the brain’s evaluation of novelty. Neuroscience and Biobehavioral Reviews, 25, 355–373. https://doi.org/10.1016/S0149-7634(01)00019-7 First citation in articleCrossref MedlineGoogle Scholar

  • Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65–70. https://doi.org/10.2307/4615733 First citation in articleGoogle Scholar

  • Horváth, J., Müller, D., Weise, A. & Schröger, E. (2010). Omission mismatch negativity builds up late. Neuroreport, 21, 537–541. https://doi.org/10.1097/WNR.0b013e3283398094 First citation in articleCrossref MedlineGoogle Scholar

  • Houck, R. L. & Mefferd, R. B. Jr. (1969). Generalization of GSR habituation to mild intramodal stimuli. Psychophysiology, 6, 202–206. https://doi.org/10.1111/j.1469-8986.1969.tb02900.x First citation in articleCrossref MedlineGoogle Scholar

  • Hughes, R. W., Vachon, F. & Jones, D. M. (2005). Auditory attentional capture during serial recall: Violations at encoding of an algorithm-based neural model? Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 736–749. https://doi.org/10.1037/0278-7393.31.4.736 First citation in articleCrossref MedlineGoogle Scholar

  • Lakens, D. D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 863. https://doi.org/10.3389/fpsyg.2013.00863 First citation in articleCrossref MedlineGoogle Scholar

  • Leiva, A., Parmentier, F. B. & Andrés, P. (2015). Distraction by deviance comparing the effects of auditory and visual deviant stimuli on auditory and visual target processing. Experimental Psychology, 62, 54–65. https://doi.org/10.1027/1618-3169/a000273 First citation in articleLinkGoogle Scholar

  • Ljungberg, J. K. & Parmentier, F. B. (2012). Cross-modal distraction by deviance: Functional similarities between the auditory and tactile modalities. Experimental Psychology, 59, 355–363. https://doi.org/10.1027/1618-3169/a000164 First citation in articleLinkGoogle Scholar

  • Ljungberg, J. K., Parmentier, F. B., Jones, D. M., Marsja, E. & Neely, G. (2014). “What’s in a name?” “No more than when it’s mine own”. Evidence from auditory oddball distraction. Acta Psychologica, 150, 161–166. https://doi.org/10.1016/j.actpsy.2014.05.009 First citation in articleCrossref MedlineGoogle Scholar

  • Ljungberg, J. K., Parmentier, F. B., Leiva, A. & Vega, N. (2012). The informational constraints of behavioral distraction by unexpected sounds: The role of event information. Journal of Experimental Psychology. Learning, Memory, and Cognition, 38, 1461–1468. https://doi.org/10.1037/a0028149 First citation in articleCrossref MedlineGoogle Scholar

  • Morey, R. D. (2008). Confidence Intervals from Normalized Data: A correction to Cousineau (2005). Tutorials in Quantitative Methods for Psychology, 4, 61–64. https://doi.org/10.20982/tqmp.04.2.p061 First citation in articleCrossrefGoogle Scholar

  • Munka, L. & Berti, S. (2006). Examining task-dependencies of different attentional processes as reflected in the P3a and reorienting negativity components of the human event-related brain potential. Neuroscience Letters, 396, 177–181. https://doi.org/10.1016/j.neulet.2005.11.035 First citation in articleCrossref MedlineGoogle Scholar

  • Näätänen, R., Paavilainen, P., Rinne, T. & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118, 2544–2590. https://doi.org/10.1016/j.clinph.2007.04.026 First citation in articleCrossref MedlineGoogle Scholar

  • Nöstl, A., Marsh, J. E. & Sörqvist, P. (2012). Expectations modulate the magnitude of attentional capture by auditory events. PLoS One, 7, e48569. https://doi.org/10.1371/journal.pone.0048569 First citation in articleCrossref MedlineGoogle Scholar

  • Parmentier, F. B. (2014). The cognitive determinants of behavioral distraction by deviant auditory stimuli: A review. Psychological Research, 78, 321–338. https://doi.org/10.1007/s00426-013-0534-4 First citation in articleCrossref MedlineGoogle Scholar

  • Parmentier, F. B., Elford, G., Escera, C., Andrés, P. & SanMiguel, I. (2008). The cognitive locus of distraction by acoustic novelty in the cross-modal oddball task. Cognition, 106, 408–432. https://doi.org/10.1016/j.cognition.2007.03.008 First citation in articleCrossref MedlineGoogle Scholar

  • Parmentier, F. B., Elsley, J. V., Andrés, P. & Barceló, F. (2011). Why are auditory novels distracting? Contrasting the roles of novelty, violation of expectation and stimulus change. Cognition, 119, 374–380. https://doi.org/10.1016/j.cognition.2011.02.001 First citation in articleCrossref MedlineGoogle Scholar

  • Parmentier, F. B., Elsley, J. V. & Ljungberg, J. K. (2010). Behavioral distraction by auditory novelty is not only about novelty: The role of the distracter’s informational value. Cognition, 115, 504–511. https://doi.org/10.1016/j.cognition.2010.03.002 First citation in articleCrossref MedlineGoogle Scholar

  • Parmentier, F. B., Ljungberg, J. K., Elsley, J. V. & Lindkvist, M. (2011). A behavioral study of distraction by vibrotactile novelty. Journal of Experimental Psychology. Human Perception and Performance, 37, 1134–1139. https://doi.org/10.1037/a0021931 First citation in articleCrossref MedlineGoogle Scholar

  • Parmentier, F. B., Turner, J. & Elsley, J. V. (2011). Distraction by auditory novelty: The course and aftermath of novelty and semantic effects. Experimental Psychology, 58, 92–101. https://doi.org/10.1027/1618-3169/a000072 First citation in articleLinkGoogle Scholar

  • R Development Core Team (2004). R: A language and environment for statistical computing [Computer software]. Vienna, Austria: R Foundation for Statistical Computing. First citation in articleGoogle Scholar

  • Roeber, U., Berti, S. & Schröger, E. (2003). Auditory distraction with different presentation rates: An event-related potential and behavioral study. Clinical Neurophysiology, 114, 341–349. https://doi.org/10.1016/S1388-2457(02)00377-2 First citation in articleCrossref MedlineGoogle Scholar

  • SanMiguel, I., Linden, D. & Escera, C. (2010). Attention capture by novel sounds: Distraction versus facilitation. European Journal of Cognitive Psychology, 22, 481–515. https://doi.org/10.1080/09541440902930994 First citation in articleCrossrefGoogle Scholar

  • SanMiguel, I., Saupe, K. & Schröger, E. (2013). I know what is missing here: Electrophysiological prediction error signals elicited by omissions of predicted “what” but not “when”. Frontiers in Human Neuroscience, 7, 1–10. https://doi.org/10.3389/fnhum.2013.00407 First citation in articleCrossref MedlineGoogle Scholar

  • Schröger, E. (1997). On the detection of auditory deviations: A pre-attentive activation model. Psychophysiology, 34, 245–257. https://doi.org/10.1111/j.1469-8986.1997.tb02395.x First citation in articleCrossref MedlineGoogle Scholar

  • Schröger, E., Marzecová, A. & SanMiguel, I. (2015). Attention and prediction in human audition: A lesson from cognitive psychophysiology. European Journal of Neuroscience, 41, 641–664. https://doi.org/10.1111/ejn.12816 First citation in articleCrossref MedlineGoogle Scholar

  • Schröger, E. & Wolff, C. (1998). Attentional orienting and reorienting is indicated by human event-related brain potentials. Neuroreport, 9, 3355–3358. https://doi.org/10.1097/00001756-199810260-00003 First citation in articleCrossref MedlineGoogle Scholar

  • Singmann, H., Bolker, B., Westfall, J. & Aust, F. (2017). afex: Analysis of factorial experiments, R package version 0.18-0. Retrieved from https://CRAN.R-project.org/package=afex First citation in articleGoogle Scholar

  • Smith, B. D., Dickel, M. & Deutsch, S. (1978). Overextinction and test stimulus modality determinants of dishabituation. Psychophysiology, 15, 324–329. https://doi.org/10.1111/j.1469-8986.1978.tb01388.x First citation in articleCrossref MedlineGoogle Scholar

  • Stefanics, G., Kremláček, J. & Czigler, I. (2014). Visual mismatch negativity: A predictive coding view. Frontiers in Human Neuroscience, 8, 666. https://doi.org/10.3389/fnhum.2014.00666 First citation in articleCrossref MedlineGoogle Scholar

  • van Laarhoven, T., Stekelenburg, J. J. & Vroomen, J. (2017). Temporal and identity prediction in visual-auditory events: Electrophysiological evidence from stimulus omissions. Brain Research, 1661, 79–87. https://doi.org/10.1016/j.brainres.2017.02.014 First citation in articleCrossref MedlineGoogle Scholar

  • Winkler, I. (2007). Interpreting the mismatch negativity. Journal of Psychophysiology, 21, 147–163. https://doi.org/10.1027/0269-8803.21.34.147 First citation in articleLinkGoogle Scholar

  • Yabe, H., Tervaniemi, M., Reinikainen, K. & Näätänen, R. (1997). Temporal window of integration revealed by MMN to sound omission. Neuroreport, 8, 1971–1974. https://doi.org/10.1097/00001756-199705260-00035 First citation in articleCrossref MedlineGoogle Scholar

  • Yabe, H., Winkler, I., Czigler, I., Koyama, S., Kakigi, R., Sutoh, T., … Kaneko, S. (2001). Organizing sound sequences in the human brain: The interplay of auditory streaming and temporal integration. Brain Research, 897, 222–227. https://doi.org/10.1016/S0006-8993(01)02224-7 First citation in articleCrossref MedlineGoogle Scholar