Skip to main content

Interference Between Number Magnitude and Parity

Discrete Representation in Number Processing

Published Online:https://doi.org/10.1027/1618-3169/a000394

Abstract. Interference between number magnitude and other properties can be explained by either an analogue magnitude system interfering with a continuous representation of the other properties or by discrete, categorical representations in which the corresponding number and property categories interfere. In this study, we investigated whether parity, a discrete property which supposedly cannot be stored on an analogue representation, could interfere with number magnitude. We found that in a parity decision task the magnitude interfered with the parity, highlighting the role of discrete representations in numerical interference. Additionally, some participants associated evenness with large values, while others associated evenness with small values, therefore, a new interference index, the dual index was introduced to detect this heterogeneous interference. The dual index can be used to reveal any heterogeneous interference that were missed in previous studies. Finally, the magnitude-parity interference did not correlate with the magnitude-response side interference (Spatial-Numerical Association of Response Codes [SNARC] effect) or with the parity-response side interference (Markedness Association of Response Codes [MARC] effect), suggesting that at least some of the interference effects are not the result of the stimulus property markedness.

References

  • Berch, D. B., Foley, E. J., Hill, R. J. & Ryan, P. M. (1999). Extracting parity and magnitude from Arabic numerals: Developmental changes in number processing and mental representation. Journal of Experimental Child Psychology, 74, 286–308. https://doi.org/10.1006/jecp.1999.2518 First citation in articleCrossref MedlineGoogle Scholar

  • Bueti, D. & Walsh, V. (2009). The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364, 1831–1840. https://doi.org/10.1098/rstb.2009.0028 First citation in articleCrossref MedlineGoogle Scholar

  • Cantlon, J. F., Platt, M. L. & Brannon, E. M. (2009). Beyond the number domain. Trends in Cognitive Sciences, 13, 83–91. https://doi.org/10.1016/j.tics.2008.11.007 First citation in articleCrossref MedlineGoogle Scholar

  • Cho, Y. S. & Proctor, R. W. (2007). When is an odd number not odd? Influence of task rule on the MARC effect for numeric classification. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33, 832–842. https://doi.org/10.1037/0278-7393.33.5.832 First citation in articleCrossref MedlineGoogle Scholar

  • Cohen Kadosh, R., Lammertyn, J. & Izard, V. (2008). Are numbers special? An overview of chronometric, neuroimaging, developmental and comparative studies of magnitude representation. Progress in Neurobiology, 84, 132–147. https://doi.org/10.1016/j.pneurobio.2007.11.001 First citation in articleCrossref MedlineGoogle Scholar

  • Dehaene, S., Bossini, S. & Giraux, P. (1993). The mental representation of parity and mental number magnitude. Journal of Experimental Psychology: General, 122, 371–396. https://doi.org/10.1037/0096-3445.122.3.371 First citation in articleCrossrefGoogle Scholar

  • Fias, W., Brysbaert, M., Geypens, F. & d’Ydewalle, G. (1996). The importance of magnitude information in numerical processing: Evidence from the SNARC effect. Mathematical Cognition, 2, 95–110. https://doi.org/10.1080/135467996387552 First citation in articleCrossrefGoogle Scholar

  • Fischer, M. H., Mills, R. A. & Shaki, S. (2010). How to cook a SNARC: Number placement in text rapidly changes spatial-numerical associations. Brain and Cognition, 72, 333–336. https://doi.org/10.1016/j.bandc.2009.10.010 First citation in articleCrossref MedlineGoogle Scholar

  • Fumarola, A., Prpic, V., Pos, O. D., Murgia, M., Umiltà, C. & Agostini, T. (2014). Automatic spatial association for luminance. Attention, Perception, & Psychophysics, 76, 759–765. https://doi.org/10.3758/s13414-013-0614-y First citation in articleCrossref MedlineGoogle Scholar

  • Gevers, W., Verguts, T., Reynvoet, B., Caessens, B. & Fias, W. (2006). Numbers and space: A computational model of the SNARC effect. Journal of Experimental Psychology: Human Perception and Performance, 32, 32–44. https://doi.org/10.1037/0096-1523.32.1.32 First citation in articleCrossref MedlineGoogle Scholar

  • Henik, A., Leibovich, T., Naparstek, S., Diesendruck, L. & Rubinsten, O. (2012). Quantities, amounts, and the numerical core system. Frontiers in Human Neuroscience, 5. https://doi.org/10.3389/fnhum.2011.00186 First citation in articleCrossref MedlineGoogle Scholar

  • Henik, A. & Tzelgov, J. (1982). Is three greater than five: The relation between physical and semantic size in comparison tasks. Memory & Cognition, 10, 389–395. https://doi.org/10.3758/BF03202431 First citation in articleCrossref MedlineGoogle Scholar

  • Hines, T. M. (1990). An odd effect: Lengthened reaction times for judgments about odd digits. Memory & Cognition, 18, 40–46. https://doi.org/10.3758/BF03202644 First citation in articleCrossref MedlineGoogle Scholar

  • Hoffmann, D., Mussolin, C., Martin, R. & Schiltz, C. (2014). The impact of mathematical proficiency on the number-space association. PLoS One, 9, e85048. https://doi.org/10.1371/journal.pone.0085048 First citation in articleCrossref MedlineGoogle Scholar

  • Huber, S., Klein, E., Graf, M., Nuerk, H.-C., Moeller, K. & Willmes, K. (2015). Embodied markedness of parity? Examining handedness effects on parity judgments. Psychological Research, 79, 963–977. https://doi.org/10.1007/s00426-014-0626-9 First citation in articleCrossref MedlineGoogle Scholar

  • Krajcsi, A., Lengyel, G. & Kojouharova, P. (2016). The source of the symbolic numerical distance and size effects. Frontiers in Psychology, 7. https://doi.org/10.3389/fpsyg.2016.01795 First citation in articleCrossref MedlineGoogle Scholar

  • Landy, D. H., Jones, E. L. & Hummel, J. E. (2008). Why spatial-numeric associations aren’t evidence for a mental number line. In B. C. LoveK. McRaeV. M. SloutskyEds., Proceedings of the 30th Annual Conference of the Cognitive Science Society (pp. 357–362). Austin, TX: Cognitive Science Society. First citation in articleGoogle Scholar

  • Leth-Steensen, C., Lucas, J. & Petrusic, W. M. (2011). Modelling SNARC by using polarity codes to adjust drift rates. Proceedings of Fechner Day, 27, 357–362. Retrieved from http://www.ispsychophysics.org/fd/index.php/proceedings/article/view/443 First citation in articleGoogle Scholar

  • Leth-Steensen, C. & Marley, A. A. J. (2000). A model of response time effects in symbolic comparison. Psychological Review, 107, 62–100. https://doi.org/10.1037/0033-295X.107.1.162 First citation in articleCrossref MedlineGoogle Scholar

  • Lorch, R. F. & Myers, J. L. (1990). Regression-analyses of repeated measures data in cognitive research. Journal of Experimental Psychology: Learning, Memory and Cognition, 16, 149–157. https://doi.org/10.1037/0278-7393.16.1.149 First citation in articleCrossref MedlineGoogle Scholar

  • Moyer, R. S. & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215, 1519–1520. https://doi.org/10.1038/2151519a0 First citation in articleCrossref MedlineGoogle Scholar

  • Nuerk, H.-C., Bauer, F., Krummenacher, J., Heller, D. & Willmes, K. (2005). The power of the mental number line: How the magnitude of unattended numbers affects performance in an Eriksen task. Psychology Science, 47, 34–50. First citation in articleGoogle Scholar

  • Nuerk, H.-C., Iversen, W. & Willmes, K. (2004). Notational modulation of the SNARC – and the MARC – (linguistic markedness of response codes) effect. The Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 57, 835–863. https://doi.org/10.1080/02724980343000512 First citation in articleCrossref MedlineGoogle Scholar

  • Oliveri, M., Vicario, C. M., Salerno, S., Koch, G., Turriziani, P., Mangano, R., … Caltagirone, C. (2008). Perceiving numbers alters time perception. Neuroscience Letters, 438, 308–311. https://doi.org/10.1016/j.neulet.2008.04.051 First citation in articleCrossref MedlineGoogle Scholar

  • Patro, K., Nuerk, H.-C., Cress, U. & Haman, M. (2014). How number-space relationships are assessed before formal schooling: A taxonomy proposal. Developmental Psychology, 5, 419. https://doi.org/10.3389/fpsyg.2014.00419 First citation in articleGoogle Scholar

  • Peirce, J. W. (2009). Generating stimuli for neuroscience using PsychoPy. Frontiers in Neuroinformatics, 2, 10. https://doi.org/10.3389/neuro.11.010.2008 First citation in articleMedlineGoogle Scholar

  • Pinhas, M., Tzelgov, J. & Ganor-Stern, D. (2011). Estimating linear effects in ANOVA designs: The easy way. Behavior Research Methods, 44, 788–794. https://doi.org/10.3758/s13428-011-0172-y First citation in articleCrossrefGoogle Scholar

  • Proctor, R. W. & Cho, Y. S. (2006). Polarity correspondence: A general principle for performance of speeded binary classification tasks. Psychological Bulletin, 132, 416–442. https://doi.org/10.1037/0033-2909.132.3.416 First citation in articleCrossref MedlineGoogle Scholar

  • Roettger, T. B. & Domahs, F. (2015). Grammatical number elicits SNARC and MARC effects as a function of task demands. The Quarterly Journal of Experimental Psychology, 68, 1231–1248. https://doi.org/10.1080/17470218.2014.979843 First citation in articleCrossrefGoogle Scholar

  • Rusconi, E., Kwan, B., Giordano, B. L., Umiltà, C. & Butterworth, B. (2006). Spatial representation of pitch height: The SMARC effect. Cognition, 99, 113–129. https://doi.org/10.1016/j.cognition.2005.01.004 First citation in articleCrossref MedlineGoogle Scholar

  • Santiago, J. & Lakens, D. (2013). Polarity correspondence does not explain the SNARC effect. Proceedings of the 36th Annual Conference of the Cognitive Science Society, Austin, TX. Retrieved from http://www.ugr.es/~santiago/SantiagoLakens-CogSci2013.pdf First citation in articleGoogle Scholar

  • Shaki, S. & Gevers, W. (2011). Cultural characteristics dissociate magnitude and ordinal information processing. Journal of Cross-Cultural Psychology, 42, 639–650. https://doi.org/10.1177/0022022111406100 First citation in articleCrossrefGoogle Scholar

  • Verguts, T. & Fias, W. (2004). Representation of number in animals and humans: A neuronal model. Journal of Cognitive Neuroscience, 16, 1493–1504. https://doi.org/10.1162/0898929042568497 First citation in articleCrossref MedlineGoogle Scholar

  • Verguts, T. & Fias, W. (2008). Symbolic and nonsymbolic pathways of number processing. Philosophical Psychology, 21, 539–554. https://doi.org/10.1080/09515080802285545 First citation in articleCrossrefGoogle Scholar

  • Verguts, T., Fias, W. & Stevens, M. (2005). A model of exact small-number representation. Psychonomic Bulletin & Review, 12, 66–80. https://doi.org/10.3758/BF03196349 First citation in articleCrossref MedlineGoogle Scholar

  • Verguts, T. & Van Opstal, F. (2014). A delta-rule model of numerical and non-numerical order processing. Journal of Experimental Psychology: Human Perception and Performance, 40, 1092–1112. https://doi.org/10.1037/a0035114 First citation in articleCrossref MedlineGoogle Scholar

  • Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7, 483–488. https://doi.org/10.1016/j.tics.2003.09.002 First citation in articleCrossref MedlineGoogle Scholar