Skip to main content
Published Online:https://doi.org/10.1027/1618-3169/a000396

Abstract. Recent theories assume a mutual facilitation in case of semantic overlap for concepts being activated simultaneously. We provide evidence for this claim using a semantic priming paradigm. To test for mutual facilitation of related concepts, a perceptual identification task was employed, presenting prime-target pairs briefly and masked, with an SOA of 0 ms (i.e., prime and target were presented concurrently, one above the other). Participants were instructed to identify the target. In Experiment 1, a cue defining the target was presented at stimulus onset, whereas in Experiment 2 the cue was not presented before the offset of stimuli. Accordingly, in Experiment 2, a post-cue task was merged with the perceptual identification task. We obtained significant semantic priming effects in both experiments. This result is compatible with the view that two concepts can both be activated in parallel and can mutually facilitate each other if they are related.

References

  • Alvarez, G. A. & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15, 106–111. https://doi.org/10.1111/j.0963-7214.2004.01502006.x First citation in articleCrossref MedlineGoogle Scholar

  • Anderson, J. E. & Holcomb, P. J. (1995). Auditory and visual semantic priming using different stimulus onset asynchronies: An event-related brain potential study. Psychophysiology, 32, 177–190. https://doi.org/10.1111/j.1469-8986.1995.tb03310.x First citation in articleCrossref MedlineGoogle Scholar

  • Anderson, J. R. (1976). Language, memory, and thought. Hillsdale, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Anderson, J. R. (1983). The architecture of cognition. Hillsdale, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Baddeley, A. D. (1966). Short-term memory for word sequences as a function of acoustic, semantic and formal similarity. The Quarterly Journal of Experimental Psychology, 18, 362–365. https://doi.org/10.1080/14640746608400055 First citation in articleCrossref MedlineGoogle Scholar

  • Baddeley, A. D. & Levy, B. A. (1971). Semantic coding and short-term memory. Journal of Experimental Psychology, 89, 132–136. https://doi.org/10.1037/h0031189 First citation in articleCrossrefGoogle Scholar

  • Balota, D. A. & Lorch, R. F. (1986). Depth of automatic spreading activation: Mediated priming effects in pronunciation but not in lexical decision. Journal of Experimental Psychology: Learning, Memory, and Cognition, 12, 336–345. https://doi.org/10.1037/0278-7393.12.3.336 First citation in articleCrossrefGoogle Scholar

  • Becker, C. A. (1980). Semantic context effects in visual word recognition: An analysis of semantic strategies. Memory & Cognition, 8, 493–512. https://doi.org/10.3758/BF03213769 First citation in articleCrossref MedlineGoogle Scholar

  • Bodner, G. E. & Masson, M. E. J. (2003). Beyond spreading activation: An influence of relatedness proportion on masked semantic priming. Psychonomic Bulletin & Review, 10, 645–652. https://doi.org/10.3758/BF03196527 First citation in articleCrossref MedlineGoogle Scholar

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Collins, A. M. & Loftus, E. F. (1975). A spreading-activation theory of semantic processing. Psychological Review, 82, 407–428. https://doi.org/10.1037/0033-295X.82.6.407 First citation in articleCrossrefGoogle Scholar

  • Coltheart, M., Rastle, K., Perry, C., Langdon, R. & Ziegler, J. (2001). DRC: A Dual Route Cascaded model of visual word recognition and reading aloud. Psychological Review, 108, 204–256. https://doi.org/10.1037/0033-295X.108.1.204 First citation in articleCrossref MedlineGoogle Scholar

  • Cowan, N. (1988). Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. Psychological Bulletin, 104, 163–191. https://doi.org/10.1037/0033-2909.104.2.163 First citation in articleCrossref MedlineGoogle Scholar

  • Cowan, N. (1995). Attention and memory: An integrated framework. New York, NY: Oxford University Press. First citation in articleGoogle Scholar

  • Cowan, N. (1999). An Embedded-Processes Model of working memory. In A. MiyakeP. ShahEds., Models of working memory: Mechanisms of active maintenance and executive control (pp. 62–101). New York, NY: Cambridge University Press. First citation in articleGoogle Scholar

  • Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. The Behavioral and Brain Sciences, 24, 87–185. https://doi.org/10.1017/S0140525X01003922 First citation in articleCrossref MedlineGoogle Scholar

  • Cree, G. S., McRae, K. & McNorgan, C. (1999). An attractor model of lexical conceptual processing: Simulating semantic priming. Cognitive Science, 23, 371–414. https://doi.org/10.1016/S0364-0213(99)00005-1 First citation in articleCrossrefGoogle Scholar

  • Crowder, R. G. (1979). Similarity and order in memory. In G. H. BowerEd., The psychology of learning and motivation: Advances in research and theory (Vol. 13, pp. 319–353). San Diego, CA: Academic Press. First citation in articleGoogle Scholar

  • Dale, H. C. A. & Gregory, M. (1966). Evidence of semantic coding in short-term memory. Psychonomic Science, 5, 75–76. https://doi.org/10.3758/BF03328287 First citation in articleCrossrefGoogle Scholar

  • Dallas, M. & Merikle, P. M. (1976a). Response processes and semantic-context effects. Bulletin of the Psychonomic Society, 8, 441–444. https://doi.org/10.3758/BF03335193 First citation in articleCrossrefGoogle Scholar

  • Dallas, M. & Merikle, P. M. (1976b). Semantic processing of non-attended visual information. Canadian Journal of Psychology/Revue Canadienne de Psychologie, 30, 15–21. https://doi.org/10.1037/h0082040 First citation in articleCrossrefGoogle Scholar

  • Davelaar, E. J., Goshen-Gottstein, Y., Ashkenazi, A., Haarmann, H. J. & Usher, M. (2005). The demise of short-term memory revisited: Empirical and computational investigations of recency effects. Psychological Review, 112, 3–42. https://doi.org/10.1037/0033-295X.112.1.3 First citation in articleCrossref MedlineGoogle Scholar

  • Davelaar, E. J., Haarmann, H. J., Goshen-Gottstein, Y. & Usher, M. (2006). Semantic similarity dissociates short- from long-term recency effects: Testing a neurocomputational model of list memory. Memory & Cognition, 34, 323–334. https://doi.org/10.3758/BF03193410 First citation in articleCrossref MedlineGoogle Scholar

  • Dean, M. P., Bub, D. N. & Masson, M. E. J. (2001). Interference from related items in object identification. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 733–743. https://doi.org/10.1037/0278-7393.27.3.733 First citation in articleCrossref MedlineGoogle Scholar

  • de Groot, A. M. (1984). Primed lexical decision: Combined effects of the proportion of related prime-target pairs and the stimulus-onset asynchrony of prime and target. The Quarterly Journal of Experimental Psychology A: Human Experimental Psychology, 36A, 253–280. https://doi.org/10.1080/14640748408402158 First citation in articleCrossrefGoogle Scholar

  • de Groot, A. M., Thomassen, A. J. & Hudson, P. T. (1982). Associative facilitation of word recognition as measured from a neutral prime. Memory & Cognition, 10, 358–370. https://doi.org/10.3758/BF03202428 First citation in articleCrossref MedlineGoogle Scholar

  • de Groot, A. M., Thomassen, A. J. & Hudson, P. T. (1986). Primed-lexical decision: The effect of varying the stimulus-onset asynchrony of prime and target. Acta Psychologica, 61, 17–36. https://doi.org/10.1016/0001-6918(86)90019-3 First citation in articleCrossrefGoogle Scholar

  • Dosher, B. A. & Rosedale, G. (1989). Integrated retrieval cues as a mechanism for priming in retrieval from memory. Journal of Experimental Psychology: General, 118, 191–211. https://doi.org/10.1037/0096-3445.118.2.191 First citation in articleCrossrefGoogle Scholar

  • Evett, L. J. & Humphreys, G. W. (1981). The use of abstract graphemic information in lexical access. The Quarterly Journal of Experimental Psychology A: Human Experimental Psychology, 33A, 325–350. https://doi.org/10.1080/14640748108400797 First citation in articleCrossrefGoogle Scholar

  • Faul, F., Erdfelder, E., Lang, A.-G. & Buchner, A. (2007). GPower 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191. https://doi.org/10.3758/BF03193146 First citation in articleCrossref MedlineGoogle Scholar

  • Haarmann, H. & Usher, M. (2001). Maintenance of semantic information in capacity-limited item short-term memory. Psychonomic Bulletin & Review, 8, 568–578. https://doi.org/10.3758/BF03196193 First citation in articleCrossref MedlineGoogle Scholar

  • Hager, W. & Hasselhorn, M. (1994). Handbuch deutschsprachiger Wortnormen [Handbook of German word norms]. Göttingen, Germany: Hogrefe. First citation in articleGoogle Scholar

  • Heister, J., Würzner, K.-M., Bubenzer, J., Pohl, E., Hanneforth, T., Geyken, A. & Kliegl, R. (2011). dlexDB - eine lexikalische Datenbank für die psychologische und linguistische Forschung [dlexDB – A lexical database for the psychological and linguistic research]. Psychologische Rundschau, 62, 10–20. https://doi.org/10.1026/0033-3042/a000029 First citation in articleLinkGoogle Scholar

  • Hocking, J., McMahon, K. L. & Zubicaray, G. I. de (2010). Semantic interference in object naming: An fMRI study of the postcue naming paradigm. NeuroImage, 50, 796–801. https://doi.org/10.1016/j.neuroimage.2009.12.067 First citation in articleCrossref MedlineGoogle Scholar

  • Humphreys, G. W., Lloyd-Jones, T. J. & Fias, W. (1995). Semantic interference effects on naming using a postcue procedure: Tapping the links between semantics and phonology with pictures and words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 961–980. https://doi.org/10.1037/0278-7393.21.4.961 First citation in articleCrossrefGoogle Scholar

  • Humphreys, M. S., Wiles, J. & Bain, J. D. (1993). Memory retrieval with two cues: Think of intersecting sets. In D. E. MeyerS. KornblumEds., Attention and performance 14: Synergies in experimental psychology, artificial intelligence, and cognitive neuroscience (pp. 489–507). Cambridge, MA: MIT Press. First citation in articleGoogle Scholar

  • Johnson-Laird, P. N., Herrmann, D. J. & Chaffin, R. (1984). Only connections: A critique of semantic networks. Psychological Bulletin, 96, 292–315. https://doi.org/10.1037/0033-2909.96.2.292 First citation in articleCrossrefGoogle Scholar

  • Levelt, W. J., Roelofs, A. & Meyer, A. S. (1999). A theory of lexical access in speech production. The Behavioral and Brain Sciences, 22, 1–38. https://doi.org/10.1017/S0140525X99001776 First citation in articleCrossref MedlineGoogle Scholar

  • Loftus, G. R. & Masson, M. E. J. (1994). Using confidence intervals in within-subjects designs. Psychonomic Bulletin and Review, 1, 476–490. https://doi.org/10.3758/BF03210951 First citation in articleCrossref MedlineGoogle Scholar

  • Luck, S. J. & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–281. https://doi.org/10.1038/36846 First citation in articleCrossref MedlineGoogle Scholar

  • Masson, M. E. J. (1991). A distributed memory model of context effects in word identification. In D. BesnerG. W. HumphreysEds., Basic processes in reading: Visual word recognition (pp. 233–263). Hillsdale, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Masson, M. E. J. (1995). A distributed memory model of semantic priming. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 3–23. https://doi.org/10.1037/0278-7393.21.1.3 First citation in articleCrossrefGoogle Scholar

  • McNamara, T. P. (2005). Semantic priming: Perspectives from memory and word recognition. New York, NY: Psychology Press. First citation in articleCrossrefGoogle Scholar

  • McNamara, T. P. (2013). Semantic memory and priming. In A. F. HealyR. W. ProctorI. B. WeinerEds., Handbook of psychology, Vol. 4: Experimental psychology (2nd ed., pp. 449–471). Hoboken, NJ: Wiley. First citation in articleGoogle Scholar

  • McRae, K., de Sa, V. R. & Seidenberg, M. S. (1997). On the nature and scope of featural representations of word meaning. Journal of Experimental Psychology: General, 126, 99–130. https://doi.org/10.1037/0096-3445.126.2.99 First citation in articleCrossref MedlineGoogle Scholar

  • Meyer, D. E. & Schvaneveldt, R. W. (1971). Facilitation in recognizing pairs of words: Evidence of a dependence between retrieval operations. Journal of Experimental Psychology, 90, 227–234. https://doi.org/10.1037/h0031564 First citation in articleCrossref MedlineGoogle Scholar

  • Moss, H. E., Hare, M. L., Day, P. & Tyler, L. K. (1994). A distributed memory model of the associative boost in semantic priming. Connection Science, 6, 413–427. https://doi.org/10.1080/09540099408915732 First citation in articleCrossrefGoogle Scholar

  • Murphy, K. (2010). Semantic priming occurs for word but not location pronunciation in the postcue task. Cognitive Processing, 12, 197–201. https://doi.org/10.1007/s10339-010-0381-9 First citation in articleCrossref MedlineGoogle Scholar

  • Murphy, K. & Green, L. (2011). The effect of target context and cue type in a postcue word pronunciation task. Advances in Cognitive Psychology, 7, 39–48. https://doi.org/10.2478/v10053-008-0086-0 First citation in articleCrossref MedlineGoogle Scholar

  • Neely, J. H. (1991). Semantic priming effects in visual word recognition: A selective review of current findings and theories. In D. BesnerG. W. HumphreysEds., Basic processes in reading: Visual word recognition (pp. 264–336). Hillsdale, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Neely, J. H. & Keefe, D. E. (1989). Semantic context effects on visual word processing: A hybrid prospective-retrospective processing theory. In G. H. BowerEd., Psychology of Learning and Motivation (Vol. 24, pp. 207–248). New York, NY: Academic Press. First citation in articleGoogle Scholar

  • Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology: Learning Memory and Cognition, 28, 411–421. https://doi.org/10.1037//0278-7393.28.3.411 First citation in articleCrossref MedlineGoogle Scholar

  • Oberauer, K. (2006). Is the focus of attention in working memory expanded through practice? Journal of Experimental Psychology: Learning Memory and Cognition, 32, 197–214. https://doi.org/10.1037/0278-7393.32.2.197 First citation in articleCrossref MedlineGoogle Scholar

  • Oberauer, K. (2009). Design for a working memory. In B. H. RossEd., Psychology of learning and motivation: Advances in research and theory (Vol. 51, pp. 45–100). San Diego, CA: Elsevier Academic Press. First citation in articleGoogle Scholar

  • Oberauer, K. & Lange, E. B. (2009). Activation and binding in verbal working memory: A dual-process model for the recognition of nonwords. Cognitive Psychology, 58, 102–136. https://doi.org/10.1016/j.cogpsych.2008.05.003 First citation in articleCrossref MedlineGoogle Scholar

  • Oberauer, K., Souza, A. S., Druey, M. D. & Gade, M. (2013). Analogous mechanisms of selection and updating in declarative and procedural working memory: Experiments and a computational model. Cognitive Psychology, 66, 157–211. https://doi.org/10.1016/j.cogpsych.2012.11.001 First citation in articleCrossref MedlineGoogle Scholar

  • Pecher, D., Zeelenberg, R. & Barsalou, L. W. (2003). Verifying different-modality properties for concepts produces switching costs. Psychological Science, 14, 119–124. https://doi.org/10.1111/1467-9280.t01-1-01429 First citation in articleCrossref MedlineGoogle Scholar

  • Pecher, D., Zeelenberg, R. & Raaijmakers, J. G. W. (2002). Associative priming in a masked perceptual identification task: Evidence for automatic processes. The Quarterly Journal of Experimental Psychology: Section A, 55, 1157–1173. https://doi.org/10.1080/02724980244000143 First citation in articleCrossrefGoogle Scholar

  • Plaut, D. C. (1995). Semantic and associative priming in a distributed attractor network. Proceedings of the 17th Annual Conference of the Cognitive Science Society. Hillsdale, NJ: Erlbaum, 37–42. First citation in articleGoogle Scholar

  • Plaut, D. C. & Booth, J. R. (2000). Individual and developmental differences in semantic priming: Empirical and computational support for a single-mechanism account of lexical processing. Psychological Review, 107, 786–823. https://doi.org/10.1037/0033-295X.107.4.786 First citation in articleCrossref MedlineGoogle Scholar

  • Poirier, M. & Saint-Aubin, J. (1995). Memory for related and unrelated words: Further Evidence on the influence of semantic factors in immediate serial recall. The Quarterly Journal of Experimental Psychology Section A, 48, 384–404. https://doi.org/10.1080/14640749508401396 First citation in articleCrossrefGoogle Scholar

  • Pollatsek, A. & Well, A. D. (1995). On the use of counterbalanced designs in cognitive research: A suggestion for a better and more powerful analysis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 785–794. https://doi.org/10.1037/0278-7393.21.3.785 First citation in articleCrossref MedlineGoogle Scholar

  • Raffone, A. & Van Leeuwen, C. (2001). Activation and coherence in memory processes: Revisiting the Parallel Distributed Processing approach to retrieval. Connection Science, 13, 349–382. https://doi.org/10.1080/09540090110109173 First citation in articleCrossrefGoogle Scholar

  • Raffone, A. & Van Leeuwen, C. (2003). Dynamic synchronization and chaos in an associative neural network with multiple active memories. Chaos, 13, 1090. https://doi.org/10.1063/1.1602111 First citation in articleCrossref MedlineGoogle Scholar

  • Raffone, A. & Wolters, G. (2001). A cortical mechanism for binding in visual working memory. Journal of Cognitive Neuroscience, 13, 766–785. https://doi.org/10.1162/08989290152541430 First citation in articleCrossref MedlineGoogle Scholar

  • Ratcliff, R. & McKoon, G. (1988). A retrieval theory of priming in memory. Psychological Review, 95, 385–408. https://doi.org/10.1037/0033-295X.95.3.385 First citation in articleCrossref MedlineGoogle Scholar

  • Roelofs, A. (1998). Rightward incrementality in encoding simple phrasal forms in speech production: Verb-particle combinations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 904–921. https://doi.org/10.1037/0278-7393.24.4.904 First citation in articleCrossrefGoogle Scholar

  • Russell, W. A. (1970). The complete German language norms for responses to 100 words from the Kent-Rosanoff word association test. In L. PostmanG. KeppelEds., Norms of Word Association (pp. 53–94). New York, NY: Academic Press. First citation in articleGoogle Scholar

  • Schmitz, M. & Wentura, D. (2012). Evaluative priming of naming and semantic categorization responses revisited: A mutual facilitation explanation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 984–1000. https://doi.org/10.1037/a0026779 First citation in articleCrossref MedlineGoogle Scholar

  • Schmitz, M., Wentura, D. & Brinkmann, T. A. (2014). Evaluative priming in a semantic flanker task: ERP evidence for a mutual facilitation explanation. Cognitive, Affective & Behavioral Neuroscience, 14, 426–442. https://doi.org/10.3758/s13415-013-0206-2 First citation in articleCrossref MedlineGoogle Scholar

  • Seidenberg, M. S., Waters, G. S., Sanders, M. & Langer, P. (1984). Pre- and postlexical loci of contextual effects on word recognition. Memory & Cognition, 12, 315–328. https://doi.org/10.3758/BF03198291 First citation in articleCrossref MedlineGoogle Scholar

  • Sharkey, A. J. & Sharkey, N. E. (1992). Weak contextual constraints in text and word priming. Journal of Memory and Language, 31, 543–572. https://doi.org/10.1016/0749-596X(92)90028-V First citation in articleCrossrefGoogle Scholar

  • Sperling, G. (1960). The information available in brief visual presentations. Psychological Monographs: General and Applied, 74, 1–29. https://doi.org/10.1037/h0093759 First citation in articleCrossrefGoogle Scholar

  • Starreveld, P. A. & La Heij, W. (2017). Picture-word interference is a Stroop effect: A theoretical analysis and new empirical findings. Psychonomic Bulletin & Review, 24, 721–733. https://doi.org/10.3758/s13423-016-1167-6 First citation in articleCrossref MedlineGoogle Scholar

  • Tukey, J. W. (1977). Exploratory data analysis. Reading, MA: Addison Wesley. First citation in articleGoogle Scholar

  • Usher, M. & Cohen, J. D. (1999). Short term memory and selection processes in a frontal-lobe model. In D. HeinkeG. W. HumphreysA. OlsonEds., Connectionist Models in Cognitive Neuroscience (pp. 78–91). London, UK: Springer. https://doi.org/10.1007/978-1-4471-0813-9_7 First citation in articleGoogle Scholar

  • Vogel, E. K., Woodman, G. F. & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27, 92–114. https://doi.org/10.1037/0096-1523.27.1.92 First citation in articleCrossref MedlineGoogle Scholar

  • Wentura, D. & Frings, C. (2008). Response-bound primes diminish affective priming in the naming task. Cognition and Emotion, 22, 374–384. https://doi.org/10.1080/02699930701446064 First citation in articleCrossrefGoogle Scholar

  • Whittlesea, B. W. A. & Jacoby, L. L. (1990). Interaction of prime repetition with visual degradation: Is priming a retrieval phenomenon? Journal of Memory and Language, 29, 546–565. https://doi.org/10.1016/0749-596X(90)90051-Z First citation in articleCrossrefGoogle Scholar

  • Wolters, G. & Raffone, A. (2008). Coherence and recurrency: Maintenance, control and integration in working memory. Cognitive Processing, 9, 1–17. https://doi.org/10.1007/s10339-007-0185-8 First citation in articleCrossref MedlineGoogle Scholar