Skip to main content
Short Research Article

Affective Influence on Context-Specific Proportion Congruent (CSPC) Effect

Neutral or Affective Facial Expressions as Context Stimuli

Published Online:https://doi.org/10.1027/1618-3169/a000436

Abstract. Congruency effects diminish in contexts associated with mostly incongruent trials compared with contexts associated with mostly congruent trials. Here, we aimed to assess affective influences on this context-specific proportion congruent (CSPC) effect. We presented either neutral or affective faces as context stimuli in a Flanker task and associated mostly incongruent trials with male/female faces for a neutral-context group and with angry/happy faces for a affective-context group. To assess general influences of affective valence, we compared CSPC effects between the neutral-context group and the affective-context group. To assess valence-specific influences, we compared the size of CSPC effects – for the affective-context group only – between participants for whom mostly incongruent trials were associated with angry faces and participants for whom mostly incongruent trials were associated with happy faces. However, the modulating influence on the CSPC effect from affective versus neutral contexts or from valence-proportion mappings was not statistically significant.

References

  • Botvinick, M. M. (2007). Conflict monitoring and decision making: Reconciling two perspectives on anterior cingulate function. Cognitive, Affective, & Behavioral Neuroscience, 7, 356–366. https://doi.org/10.3758/CABN.7.4.356 First citation in articleCrossref MedlineGoogle Scholar

  • Bugg, M. J. (2012). Dissociating levels of cognitive control: The case of Stroop interference. Current Directions in Psychological Science, 21, 302–309. https://doi.org/10.1177/0963721412453586 First citation in articleCrossrefGoogle Scholar

  • Bugg, M. J. & Chanani, S. (2011). List-wide control is not entirely elusive: Evidence from picture-word Stroop. Psychonomic Bulletin & Review, 18, 930–936. https://doi.org/10.3758/s13423-011-0112-y First citation in articleCrossref MedlineGoogle Scholar

  • Cañadas, E., Lupiáñez, J., Kawakami, K., Niedenthal, P. M. & Rodríguez-Bailón, R. (2016). Perceiving emotions: Cueing social categorization processes and attentional control through facial expressions. Cognition and Emotion, 30, 1149–1163. https://doi.org/10.1080/02699931.2015.1052781 First citation in articleCrossref MedlineGoogle Scholar

  • Cañadas, E., Rodríguez-Bailón, R., Milliken, B. & Lupianez, J. (2013). Social categories as a context for the allocation of attentional control. Journal of Experimental Psychology: General, 142, 934–943. https://doi.org/10.1037/A0029794 First citation in articleCrossref MedlineGoogle Scholar

  • Crump, M. J. C. (2016). Learning to selectively attend from context-specific attentional histories: A demonstration and some constraints. Canadian Journal of Experimental Psychology, 70, 59–77. https://doi.org/10.1037/cep0000066 First citation in articleCrossref MedlineGoogle Scholar

  • Crump, M. J. C., Brosowsky, N. P. & Milliken, B. (2017). Reproducing the location-based context-specific proportion congruent effect for frequency unbiased items: A reply to Hutcheon and Spieler (2016). The Quarterly Journal of Experimental Psychology, 70, 1792–1807. https://doi.org/10.1080/17470218.2016.1206130 First citation in articleCrossrefGoogle Scholar

  • Crump, M. J. C., Gong, Z. & Milliken, B. (2006). The context-specific proportion congruent Stroop effect: Location as a contextual cue. Psychonomic Bulletin & Review, 13, 316–321. https://doi.org/10.3758/BF03193850 First citation in articleCrossref MedlineGoogle Scholar

  • Crump, M. J. C. & Milliken, B. (2009). The flexibility of context-specific control: Evidence for context-driven generalization of item-specific control settings. The Quarterly Journal of Experimental Psychology, 62, 1523–1532. https://doi.org/10.1080/17470210902752096 First citation in articleCrossrefGoogle Scholar

  • Crump, M. J. C., Vaquero, J. M. M. & Milliken, B. (2008). Context-specific learning and control: The roles of awareness, task relevance, and relative salience. Consciousness and Cognition, 17, 22–36. https://doi.org/10.1016/j.concog.2007.01.004 First citation in articleCrossref MedlineGoogle Scholar

  • Dignath, D. & Eder, A. B. (2015). Stimulus conflict triggers behavioral avoidance. Cognitive, Affective, & Behavioral Neuroscience, 15, 822–836. https://doi.org/10.3758/s13415-015-0355-6 First citation in articleCrossref MedlineGoogle Scholar

  • Dignath, D., Janczyk, M. & Eder, A. B. (2017). Phasic valence and arousal do not influence post-conflict adjustments in the Simon task. Acta Psychologica, 174, 31–39. https://doi.org/10.1016/j.actpsy.2017.01.004 First citation in articleCrossref MedlineGoogle Scholar

  • Dreisbach, G. & Fischer, R. (2012). Conflicts as aversive signals. Brain and Cognition, 78, 94–98. https://doi.org/10.1016/j.bandc.2011.12.003 First citation in articleCrossref MedlineGoogle Scholar

  • Dreisbach, G. & Fischer, R. (2015). Conflicts as aversive signals for control adaptation. Current Directions in Psychological Science, 24, 255–260. https://doi.org/10.1177/0963721415569569 First citation in articleCrossrefGoogle Scholar

  • Dreisbach, G., Reindl, A. L. & Fischer, R. (2016). Conflict and disfluency as aversive signals: Context-specific processing adjustments are modulated by affective location associations. Psychological Research, 82, 324–336. https://doi.org/10.1007/s00426-016-0822-x First citation in articleCrossref MedlineGoogle Scholar

  • Egner, T. (2008). Multiple conflict-driven control mechanisms in the human brain. Trends in Cognitive Sciences, 12, 374–380. https://doi.org/10.1016/j.tics.2008.07.001 First citation in articleCrossref MedlineGoogle Scholar

  • Egner, T. (2014). Creatures of habit (and control): A multi-level learning perspective on the modulation of congruency effects. Frontiers in Psychology, 5, 1247. https://doi.org/10.3389/fpsyg.2014.01247 First citation in articleCrossref MedlineGoogle Scholar

  • Eder, A. B. & Dignath, D. (2014). I like to get nothing: Implicit and explicit evaluation of avoided negative outcomes. Journal of Experimental Psychology: Animal Learning and Cognition, 40, 55–62. https://doi.org/10.1037/xan0000005 First citation in articleCrossref MedlineGoogle Scholar

  • Fritz, J., Fischer, R. & Dreisbach, G. (2015). The influence of negative stimulus features on conflict adaption: Evidence from fluency of processing. Frontiers in Psychology, 6, 1–9. https://doi.org/10.3389/fpsyg.2015.00185 First citation in articleCrossref MedlineGoogle Scholar

  • Goeleven, E., De Raedt, R., Leyman, L. & Verschuere, B. (2008). The Karolinska directed emotional faces: A validation study. Cognition and Emotion, 22, 1094–1118. https://doi.org/10.1080/02699930701626582 First citation in articleCrossrefGoogle Scholar

  • Hart, S. J., Green, S. R., Casp, M. & Belger, A. (2010). Emotional priming effects during Stroop task performance. NeuroImage, 49, 2662–2670. https://doi.org/10.1016/j.neuroimage.2009.10.076 First citation in articleCrossref MedlineGoogle Scholar

  • Hutcheon, T. & Spieler, D. (2017). Limits on the generalizability of context-driven control. The Quarterly Journal of Experimental Psychology, 70, 1292–1304. https://doi.org/10.1080/17470218.2016.1182193 First citation in articleCrossrefGoogle Scholar

  • Inzlicht, M., Bartholow, B. D. & Hirsh, J. B. (2015). Emotional foundations of cognitive control. Trends in Cognitive Sciences, 19, 126–132. https://doi.org/10.1016/j.tics.2015.01.004 First citation in articleCrossref MedlineGoogle Scholar

  • Jarosz, A. F. & Wiley, J. (2014). What are the odds? A practical guide to computing and reporting Bayes factors. Journal of Problem Solving, 7, 2–9. https://doi.org/10.7771/1932-6246.1167 First citation in articleCrossrefGoogle Scholar

  • Kanske, P. & Kotz, S. A. (2011). Conflict processing is modulated by positive emotion: ERP data from a flanker task. Behavioural Brain Research, 219, 382–386. https://doi.org/10.1016/j.bbr.2011.01.043 First citation in articleCrossref MedlineGoogle Scholar

  • Larsen, J. T. & Norris, J. I. (2009). A facial electromyographic investigation of affective contrast. Psychophysiology, 46, 831–842. https://doi.org/10.1111/j.1469-8986.2009.00820.x First citation in articleCrossref MedlineGoogle Scholar

  • Lehle, C. & Hübner, R. (2008). On-the-fly adaptation of selectivity in the flanker task. Psychonomic Bulletin & Review, 15, 814–818. https://doi.org/10.3758/PBR.15.4.814 First citation in articleCrossref MedlineGoogle Scholar

  • Logan, G. D. & Zbrodoff, N. J. (1979). When it helps to be misled: Facilitative effects of increasing the frequency of conflicting stimuli in a Stroop-like task. Memory & Cognition, 7, 166–174. https://doi.org/10.3758/BF03197535 First citation in articleCrossrefGoogle Scholar

  • Lundqvist, D., Flykt, A. & Öhman, A. (1998). The Karolinska Directed Emotional Faces – KDEF [CD ROM]. Stockholm, Sweden: Department of Clinical Neuroscience, Psychology section, Karolinska Institute. First citation in articleGoogle Scholar

  • Pessoa, L. (2009). How do emotion and motivation direct executive control? Trends in Cognitive Sciences, 13, 160–166. https://doi.org/10.1016/j.tics.2009.01.006 First citation in articleCrossref MedlineGoogle Scholar

  • Richards, A., Holmes, A., Pell, P. J. & Bethell, E. J. (2013). Adapting effects of emotional expression in anxiety: Evidence for an enhanced late positive potential. Social Neuroscience, 8, 650–664. https://doi.org/10.1080/17470919.2013.854273 First citation in articleCrossref MedlineGoogle Scholar

  • Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D. & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16, 225–237. https://doi.org/10.3758/PBR.16.2.225 First citation in articleCrossref MedlineGoogle Scholar

  • Schmidt, J. R., Lemercier, C. & Houwer, J. D. (2014). Context-specific temporal learning with not-conflict stimuli: Proof-of-principle for a learning account of context-specific proportion congruent effects. Frontiers in Psychology, 5, 1–10. https://doi.org/10.3389/fpsyg.2014.01241 First citation in articleCrossref MedlineGoogle Scholar

  • Taubert, J., Aagten-Murphy, D. & Parr, L. A. (2012). A comparative study of face processing using scrambled faces. Perception, 41, 460–473. https://doi.org/10.1068/p7151 First citation in articleCrossref MedlineGoogle Scholar

  • Van Steenbergen, H., Band, G. P. H. & Hommel, B. (2009). Reward counteracts conflict adaptation: Evidence for a role of affect in executive control. Psychological Science, 20, 1473–1477. https://doi.org/10.1111/j.1467-9280.2009.02470.x First citation in articleCrossref MedlineGoogle Scholar

  • Van Steenbergen, H., Band, G. P. H. & Hommel, B. (2012). Reward valence modulates conflict-driven attentional adaptation: Electrophysiological evidence. Biological Psychology, 90, 234–241. https://doi.org/10.1016/j.biopsycho.2012.03.018 First citation in articleCrossref MedlineGoogle Scholar

  • Verguts, T. & Notebaert, W. (2009). Adaptation by binding: A learning account of cognitive control. Trends in Cognitive Sciences, 13, 252–257. https://doi.org/10.1016/j.tics.2009.02.007 First citation in articleCrossref MedlineGoogle Scholar

  • Weidler, J. B. & Bugg, M. J. (2016). Transfer of location-specific control to untrained locations. The Quarterly Journal of Experimental Psychology, 69, 2202–2217. https://doi.org/10.1080/17470218.2015.1111396 First citation in articleCrossrefGoogle Scholar

  • Wendt, M. & Kiesel, A. (2011). Conflict adaptation in time: Foreperiods as contextual cues for attentional adjustment. Psychonomic Bulletin & Review, 18, 910–916. https://doi.org/10.3758/s13423-011-0119-4 First citation in articleCrossref MedlineGoogle Scholar

  • Wendt, M., Kiesel, A., Geringswald, F., Purmann, S. & Fischer, R. (2014). Attentional adjustment to conflict strength: Evidence from the effects of manipulating flanker-target SOA on response times and prestimulus pupil size. Experimental Psychology, 61, 55–67. https://doi.org/10.1027/1618-3169/a000227 First citation in articleLinkGoogle Scholar