Skip to main content

The Opposite of Stress

The Relationship Between Vagal Tone, Creativity, and Divergent Thinking

Published Online:https://doi.org/10.1027/1618-3169/a000483

Abstract. Cognition is affected by psychophysiological states. While the influence of stress on cognition has been investigated intensively, less studies have addressed how the opposite of stress, a state of relaxation, affects cognition. We investigated whether the extent of parasympathetic activation is positively related to divergent thinking. Sixty healthy female participants were randomly allocated to a standardized vagus nerve massage (n = 19), a standardized soft shoulder massage (n = 22), or a resting control group (n = 19). Subsequently, participants completed the Alternative Uses Test (AUT), a measure of divergent thinking. Respiratory sinus arrhythmia (RSA), a vagally mediated heart rate variability component, was monitored throughout the experiment. The area under the curve with respect to the increase was calculated for RSA trajectories as an indicator of vagal tone during the relaxing intervention. Regressions tested the effect of vagal tone on AUT outcomes. We found an association between vagal tone and subsequent AUT outcomes. Yet, this association was no longer significant when controlling for the effect of the creative potential of an individual, which was strongly related to AUT outcomes. Being exploratory, we found a positive association between creative potential and vagal tone. These results imply that creative potential might be related to the capacity to relax.

References

  • Altini, M. (2013). Heart rate variability logger (version 4.6.2) [IOS Mobile Application Software]. Retrieved from https://apps.apple.com/ns/heart-rate-variability-logger/id683984776 First citation in articleGoogle Scholar

  • Beaty, R. E., Benedek, M., Wilkins, R. W., Jauk, E., Fink, A., Silvia, P. J., … Neubauer, A. C. (2014). Creativity and the default network: A functional connectivity analysis of the creative brain at rest. Neuropsychologia, 64, 92–98. 10.1016/j.neuropsychologia.2014.09.019 First citation in articleCrossref MedlineGoogle Scholar

  • Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1993). Respiratory Sinus Arrhythmia: Autonomic origins, physiological mechenisms, and psychophysiological implications. Psychophysiology, 30, 183–196. 10.1111/j.1469-8986.1993.tb01731.x First citation in articleCrossref MedlineGoogle Scholar

  • Beversdorf, D. Q., Hughes, J. D., Steinberg, B. A., Lewis, L. D., & Heilman, K. M. (1999). Noradrenergic modulation of cognitive flexibility in problem solving. Neuroreport, 10, 2763–2767. 10.1097/00001756-199909090-00012 First citation in articleCrossref MedlineGoogle Scholar

  • Byron, K., Khazanchi, S., & Nazarian, D. (2010). The relationship between stressors and creativity: A meta-analysis examining competing theoretical models. Journal of Applied Psychology, 95(1), 201–212. 10.1037/a0017868 First citation in articleCrossref MedlineGoogle Scholar

  • Carson, D. K., & Runco, M. A. (1999). Creative problem solving and problem finding in young adults: Interconnections with stress, hassles, and coping abilities. The Journal of Creative Behavior, 33, 167–188. 10.1002/j.2162-6057.1999.tb01195.x First citation in articleCrossrefGoogle Scholar

  • Carson, S. H., Peterson, J. B., & Higgins, D. M. (2005). Reliability, validity, and factor structure of the creative achievement questionnaire. Creativity Research Journal, 17(1), 37–50. 10.1207/s15326934crj1701_4 First citation in articleCrossrefGoogle Scholar

  • Clancy, J. A., Mary, D. A., Witte, K. K., Greenwood, J. P., Deuchars, S. A., & Deuchars, J. (2014). Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimulation, 7, 871–877. 10.1016/j.brs.2014.07.031 First citation in articleCrossref MedlineGoogle Scholar

  • Colzato, L. S., Ozturk, A., & Hommel, B. (2012). Meditate to create: The impact of focused-attention and open-monitoring training on convergent and divergent thinking. Frontiers in Psychology, 3, 116. 10.3389/fpsyg.2012.00116 First citation in articleCrossref MedlineGoogle Scholar

  • Colzato, L. S., Ritter, S. M., & Steenbergen, L. (2018). Transcutaneous vagus nerve stimulation (tVNS) enhances divergent thinking. Neuropsychologia, 111, 72–76. 10.1016/j.neuropsychologia.2018.01.003 First citation in articleCrossref MedlineGoogle Scholar

  • de Kloet, E. R., Oitzl, M. S., & Joëls, M. (1999). Stress and cognition: Are corticosteroids good or bad guys? Trends in Neurosciences, 22, 422–426. 10.1016/S0166-2236(99)01438-1 First citation in articleCrossref MedlineGoogle Scholar

  • Denver, J. W., Reed, S. F., & Porges, S. W. (2007). Methodological issues in the quantification of respiratory sinus arrhythmia. Biological Psychology, 74, 286–294. 10.1016/j.biopsycho.2005.09.005 First citation in articleCrossref MedlineGoogle Scholar

  • Dippo, C., & Kudrowitz, B. (2013). Evaluating the alternative uses test of creativity. Preceedings of the National Conference on Undergraduate Research (NCUR), 8, 427–434. First citation in articleGoogle Scholar

  • Follesa, P., Biggio, F., Gorini, G., Caria, S., Talani, G., Dazzi, L., … Biggio, G. (2007). Vagus nerve stimulation increases norepinephrine concentration and the gene expression of BDNF and bFGF in the rat brain. Brain Research, 1179, 28–34. 10.1016/j.brainres.2007.08.045 First citation in articleCrossref MedlineGoogle Scholar

  • Ghacibeh, G. A., Shenker, J. I., Shenal, B., Uthman, B. M., & Heilman, K. M. (2006). Effect of vagus nerve stimulation on creativity and cognitive flexibility. Epilepsy & Behavior, 8, 720–725. 10.1016/j.yebeh.2006.03.008 First citation in articleCrossref MedlineGoogle Scholar

  • Gilhooly, K. J., Fioratou, E., Anthony, S. H., & Wynn, V. (2007). Divergent thinking: Strategies and executive involvement in generating novel uses for familiar objects. British Journal of Psychology, 98, 611–625. 10.1111/j.2044-8295.2007.tb00467.x First citation in articleCrossref MedlineGoogle Scholar

  • Guilford, J. P. (1962). Potentiality for creativity. Gifted Child Quarterly, 6, 87–90. 10.1177/001698626200600307 First citation in articleCrossrefGoogle Scholar

  • Heilman, K. M. (2016). Possible brain mechanisms of creativity. Archives of Clinical Neuropsychology, 31, 285–296. 10.1093/arclin/acw009 First citation in articleCrossref MedlineGoogle Scholar

  • Hershey, M., & Kearns, P. (1979). The effect of guided fantasy on the creative thinking and writing ability of gifted students. Gifted Child Quarterly, 23(1), 71–77. 10.1177/001698627902300118 First citation in articleCrossrefGoogle Scholar

  • Jacobs, H. I. L., Riphagen, J. M., Razat, C. M., Wiese, S., & Sack, A. T. (2015). Transcutaneous vagus nerve stimulation boosts associative memory in older individuals. Neurobiology of Aging, 36, 1860–1867. 10.1016/j.neurobiolaging.2015.02.023 First citation in articleCrossref MedlineGoogle Scholar

  • JASP Team. (2019). JASP (Version 0.11.1) (Version version 0.11.1 [Computer software]). Amsterdam, The Netherlands: JASP Team. Retrieved from https://jasp-stats.org/download First citation in articleGoogle Scholar

  • Jung, R. E., Mead, B. S., Carrasco, J., & Flores, R. A. (2013). The structure of creative cognition in the human brain. Frontiers in Human Neuroscience, 7, 1–13. 10.3389/fnhum.2013.00330 First citation in articleCrossref MedlineGoogle Scholar

  • Khasky, A. D., & Smith, J. C. (1999). Stress, relaxation states, and creativity. Perceptual and Motor Skills, 88, 409–416. 10.2466/pms.1999.88.2.409 First citation in articleCrossref MedlineGoogle Scholar

  • Krampen, G. (1997). Promotion of creativity (divergent productions) and convergent productions by systematic‐relaxation exercises: Empirical evidence from five experimental studies with children, young adults, and elderly. European Journal of Personality, 11, 83–99. 10.1002/(sici)1099-0984(199706)11:2<83::aid-per280>3.0.co;2-5 First citation in articleCrossrefGoogle Scholar

  • Kühn, S., Ritter, S. M., Müller, B. C. N., van Baaren, R. B., Brass, M., & Dijksterhuis, A. (2014). The importance of the default mode network in creativity – a structural MRI study. The Journal of Creative Behavior, 48, 152–163. 10.1002/jocb.45 First citation in articleCrossrefGoogle Scholar

  • Kupari, J., Häring, M., Agirre, E., Castelo-Branco, G., & Ernfors, P. (2019). An atlas of vagal sensory neurons and their molecular specialization. Cell Reports, 27, 2508–2523.e4. 10.1016/j.celrep.2019.04.096 First citation in articleCrossref MedlineGoogle Scholar

  • Laborde, S., Mosley, E., & Thayer, J. F. (2017). Heart rate variability and cardiac vagal tone in psychophysiological research – recommendations for experiment planning, data analysis, and data reporting. Frontiers in Psychology, 8, 213. 10.3389/fpsyg.2017.00213 First citation in articleCrossref MedlineGoogle Scholar

  • Manzoni, G. M., Pagnini, F., Castelnuovo, G., & Molinari, E. (2008). Relaxation training for anxiety: A ten-years systematic review with meta-analysis. BMC Psychiatry, 8(1), 41. 10.1186/1471-244X-8-41 First citation in articleCrossref MedlineGoogle Scholar

  • Martin, C. O., Denburg, N. L., Tranel, D., Granner, M. A., & Bechara, A. (2004). The effects of vagus nerve stimulation on decision-making. Cortex, 40(4–5), 605–612. 10.1016/S0010-9452(08)70156-4 First citation in articleCrossref MedlineGoogle Scholar

  • McEwen, B. S., & Sapolsky, R. M. (1995). Stress and cognitive function. Current Opinion in Neurobiology, 5, 205–216. 10.1016/0959-4388(95)80028-X First citation in articleCrossref MedlineGoogle Scholar

  • Meier, M., Unternaehrer, E., Dimitroff, S. J., Benz, A., Bentele, U. U., Wenzel, M., … Prüssner, J. C. (2020). In search of a standardized protocol for parasympathetic nervous system activation. PsyArXiv Preprint. 10.31234/Osf.Io/M85qc First citation in articleCrossrefGoogle Scholar

  • Müller, B. C. N., Gerasimova, A., & Ritter, S. M. (2016). Concentrative meditation influences creativity by increasing cognitive flexibility. Psychology of Aesthetics, Creativity, and the Arts, 10, 278–286. 10.1037/a0040335 First citation in articleCrossrefGoogle Scholar

  • Peciuliene, I., Perminas, A., Gustainiene, L., & Jarasiunaite, G. (2015). Effectiveness of progressive muscle relaxation and biofeedback relaxation in lowering physiological arousal among students with regard to personality features. Procedia - Social and Behavioral Sciences, 205, 228–235. 10.1016/j.sbspro.2015.09.064 First citation in articleCrossrefGoogle Scholar

  • Perkins, A. M., Arnone, D., Smallwood, J., & Mobbs, D. (2015). Thinking too much: Self-generated thought as the engine of neuroticism. Trends in Cognitive Sciences, 19, 492–498. 10.1016/j.tics.2015.07.003 First citation in articleCrossref MedlineGoogle Scholar

  • Prüssner, J. C., Kirschbaum, C., Meinlschmid, G., & Hellhammer, D. H. (2003). Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology, 28, 916–931. 10.1016/S0306-4530(02)00108-7 First citation in articleCrossref MedlineGoogle Scholar

  • R Core Team. (2019). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. First citation in articleGoogle Scholar

  • Raichle, M. E. (2015). The brain’s default mode network. Annual Review of Neuroscience, 38(1), 433–447. 10.1146/annurev-neuro-071013-014030 First citation in articleCrossref MedlineGoogle Scholar

  • Rodríguez-Liñares, L., Méndez, A. J., Lado, M. J., Olivieri, D. N., Vila, X. A., & Gómez-Conde, I. (2011). An open source tool for heart rate variability spectral analysis. Computer Methods and Programs in Biomedicine, 103(1), 39–50. 10.1016/j.cmpb.2010.05.012 First citation in articleCrossref MedlineGoogle Scholar

  • RStudio Team. (2016). RStudio: Integrated Development for R. Boston, MA: RStudio Team. First citation in articleGoogle Scholar

  • Sandi, C. (2013). Stress and cognition: Stress and cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 4, 245–261. 10.1002/wcs.1222 First citation in articleCrossref MedlineGoogle Scholar

  • Schevernels, H., van Bochove, M. E., De Taeye, L., Bombeke, K., Vonck, K., Van Roost, D., … Boehler, C. N. (2016). The effect of vagus nerve stimulation on response inhibition. Epilepsy & Behavior, 64, 171–179. 10.1016/j.yebeh.2016.09.014 First citation in articleCrossref MedlineGoogle Scholar

  • Silver, J. A., Hughes, J. D., Bornstein, R. A., & Beversdorf, D. Q. (2004). Effect of anxiolytics on cognitive flexibility in problem solving. Cognitive and Behavioral Neurology, 17, 93–97. 10.1097/01.wnn.0000119240.65522.d9 First citation in articleCrossref MedlineGoogle Scholar

  • Thayer, J. F., Åhs, F., Fredrikson, M., Sollers, J. J., & Wager, T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neuroscience and Biobehavioral Reviews, 36, 747–756. 10.1016/j.neubiorev.2011.11.009 First citation in articleCrossref MedlineGoogle Scholar

  • Thayer, J. F., & Lane, R. D. (2009). Claude Bernard and the heart–brain connection: Further elaboration of a model of neurovisceral integration. Neuroscience and Biobehavioral Reviews, 33, 81–88. 10.1016/j.neubiorev.2008.08.004 First citation in articleCrossref MedlineGoogle Scholar

  • Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. New York, NY: Springer. First citation in articleCrossrefGoogle Scholar

  • Wolf, O. T. (2009). Stress and memory in humans: Twelve years of progress? Brain Research, 1293, 142–154. 10.1016/j.brainres.2009.04.013 First citation in articleCrossref MedlineGoogle Scholar