Skip to main content

Transgenerational Transmission of Stress Pathology

Contributions of Rodent Models

Published Online:https://doi.org/10.1027/2151-2604/a000219

Abstract. The impact of the environment early in life on long-term outcomes is well known. Stressful experiences during pre- and postnatal development can modulate the genetic programming of specific brain circuits underlying emotional and cognitive aspects of behavioral adaptation to stressful experiences later in life. Furthermore, there is documented evidence for gene-environment interactions in the context of early-life stress. Identical gene variants can be associated with different phenotypes depending on environmental factors. DNA methylation, an enzymatically-catalyzed modification of the DNA, is the mechanism through which phenotypes are regulated. The dynamics and plasticity of epigenetic mechanisms can have short-term, long-term, or transgenerational consequences. In epigenetic research, rodent models have targeted several behavioral and emotional phenotypes. These models have contributed significantly to our understanding of the environmental regulation of the developmental brain in early life. This review will highlight studies with rats and mice on epigenetic processes in fetal programming of stress-related mental disorders.

References

  • Alkon, A., Boyce, W. T., Tran, L., Harley, K. G., Neuhaus, J. & Eskenazi, B. (2014). Prenatal adversities and Latino children’s autonomic nervous system reactivity trajectories from 6 months to 5 years of age. PLoS One, 9, e86283. doi: 10.1371/journal.pone.0086283 First citation in articleCrossrefGoogle Scholar

  • Babenko, O., Kovalchuk, I. & Metz, G. A. (2015). Stress-induced perinatal and transgenerational epigenetic programming of brain development and mental health. Neuroscience and Biobehavioral Reviews, 48, 70–91. doi: 10.1016/j.neubiorev.2014.11.013 First citation in articleCrossrefGoogle Scholar

  • Bagot, R. C., Tse, Y. C., Nguyen, H. B., Wong, A. S., Meaney, M. J. & Wong, T. P. (2012). Maternal care influences hippocampal N-methyl-D-aspartate receptor function and dynamic regulation by corticosterone in adulthood. Biological Psychiatry, 72, 491–498. doi: 10.1016/j.biopsych.2012.03.016 First citation in articleCrossrefGoogle Scholar

  • Bailoo, J. D., Jordan, R. L., Garza, X. J. & Tyler, A. N. (2014). Brief and long periods of maternal separation affect maternal behavior and offspring behavioral development in C57BL/6 mice. Developmental Psychobiology, 56, 674–685. doi: 10.1002/dev.21135 First citation in articleCrossrefGoogle Scholar

  • Barker, D. J. (1993). Fetal origins of coronary heart disease. British Heart Journal, 69, 195–196. First citation in articleCrossrefGoogle Scholar

  • Barnes, S. K. & Ozanne, S. E. (2011). Pathways linking the early environment to long-term health and lifespan. Progress in Biophysics and Molecular Biology, 106, 323–336. doi: 10.1016/j.pbiomolbio.2010.12.005 First citation in articleCrossrefGoogle Scholar

  • Barzegar, M., Sajjadi, F. S., Talaei, S. A., Hamidi, G. & Salami, M. (2015). Prenatal exposure to noise stress: Anxiety, impaired spatial memory, and deteriorated hippocampal plasticity in postnatal life. Hippocampus, 25, 187–196. doi: 10.1002/hipo.22363 First citation in articleCrossrefGoogle Scholar

  • Beijers, R., Jansen, J., Riksen-Walraven, M. & de Weerth, C. (2010). Maternal prenatal anxiety and stress predict infant illnesses and health complaints. Pediatrics, 126, e401–e409. doi: 10.1542/peds.2009-3226 First citation in articleCrossrefGoogle Scholar

  • Belay, H., Burton, C. L., Lovic, V., Meaney, M. J., Sokolowski, M. & Fleming, A. S. (2011). Early adversity and serotonin transporter genotype interact with hippocampal glucocorticoid receptor mRNA expression, corticosterone, and behavior in adult male rats. Behavioral Neuroscience, 125, 150–160. doi: 10.1037/a0022891 First citation in articleCrossrefGoogle Scholar

  • Benoit, J. D., Rakic, P. & Frick, K. M. (2015). Prenatal stress induces spatial memory deficits and epigenetic changes in the hippocampus indicative of heterochromatin formation and reduced gene expression. Behavioral Brain Research, 281, 1–8. doi: 10.1016/j.bbr.2014.12.001 First citation in articleCrossrefGoogle Scholar

  • Bhatnagar, S., Lee, T. M. & Vining, C. (2005). Prenatal stress differentially affects habituation of corticosterone responses to repeated stress in adult male and female rats. Hormones and Behavior, 47, 430–438. doi: 10.1016/j.yhbeh.2004.11.019 First citation in articleCrossrefGoogle Scholar

  • Bhutani, N., Burns, D. M. & Blau, H. M. (2011). DNA demethylation dynamics. Cell, 146, 866–872. doi: 10.1016/j.cell.2011.08.042 First citation in articleCrossrefGoogle Scholar

  • Bowman, R. E., MacLusky, N. J., Sarmiento, Y., Frankfurt, M., Gordon, M. & Luine, V. N. (2004). Sexually dimorphic effects of prenatal stress on cognition, hormonal responses, and central neurotransmitters. Endocrinology, 145, 3778–3787. doi: 10.1210/en.2003-1759 First citation in articleCrossrefGoogle Scholar

  • Branchi, I. & Cirulli, F. (2014). Early experiences: Building up the tools to face the challenges of adult life. Developmental Psychobiology, 56, 1661–1674. doi: 10.1002/dev.21235 First citation in articleCrossrefGoogle Scholar

  • Bredy, T. W., Zhang, T. Y., Grant, R. J., Diorio, J. & Meaney, M. J. (2004). Peripubertal environmental enrichment reverses the effects of maternal care on hippocampal development and glutamate receptor subunit expression. European Journal of Neuroscience, 20, 1355–1362. doi: 10.1111/j.1460-9568.2004.03599.x First citation in articleCrossrefGoogle Scholar

  • Brunton, P. J. & Russell, J. A. (2010). Prenatal social stress in the rat programmes neuroendocrine and behavioural responses to stress in the adult offspring: Sex-specific effects. Journal of Neuroendocrinology, 22, 258–271. doi: 10.1111/j.1365-2826.2010.01969.x First citation in articleCrossrefGoogle Scholar

  • Buhl, E. S., Jensen, T. K., Jessen, N., Elfving, B., Buhl, C. S., Kristiansen, S. B., … Petersen, K. F. (2010). Treatment with an SSRI antidepressant restores hippocampo-hypothalamic corticosteroid feedback and reverses insulin resistance in low-birth-weight rats. American Journal of Physiology – Endocrinology and Metabolism, 298, E920–E929. doi: 10.1152/ajpendo.00606.2009 First citation in articleCrossrefGoogle Scholar

  • Cao, X., Huang, S., Cao, J., Chen, T., Zhu, P., Zhu, R., … Ruan, D. (2014). The timing of maternal separation affects morris water maze performance and long-term potentiation in male rats. Developmental Psychobiology, 56, 1102–1109. doi: 10.1002/dev.21130 First citation in articleCrossrefGoogle Scholar

  • Carr, C. P., Martins, C. M., Stingel, A. M., Lemgruber, V. B. & Juruena, M. F. (2013). The role of early life stress in adult psychiatric disorders: A systematic review according to childhood trauma subtypes. Journal of Nervous and Mental Disease, 201, 1007–1020. doi: 10.1097/NMD.0000000000000049 First citation in articleCrossrefGoogle Scholar

  • Champagne, F. A. (2013). Early environments, glucocorticoid receptors, and behavioral epigenetics. Behavioral Neuroscience, 127, 628–636. doi: 10.1037/a0034186 First citation in articleCrossrefGoogle Scholar

  • Champagne, F. A., Francis, D. D., Mar, A. & Meaney, M. J. (2003). Variations in maternal care in the rat as a mediating influence for the effects of environment on development. Physiology and Behavior, 79, 359–371. First citation in articleCrossrefGoogle Scholar

  • Claessens, S. E., Daskalakis, N. P., Oitzl, M. S. & de Kloet, E. R. (2012). Early handling modulates outcome of neonatal dexamethasone exposure. Hormones and Behavior, 62, 433–441. doi: 10.1016/j.yhbeh.2012.07.011 First citation in articleCrossrefGoogle Scholar

  • Colman, I., Ataullahjan, A., Naicker, K. & Van Lieshout, R. J. (2012). Birth weight, stress, and symptoms of depression in adolescence: Evidence of fetal programming in a national Canadian cohort. Canadian Journal of Psychiatry, 57, 422–428. First citation in articleGoogle Scholar

  • Connors, E. J., Migliore, M. M., Pillsbury, S. L., Shaik, A. N. & Kentner, A. C. (2015). Environmental enrichment models a naturalistic form of maternal separation and shapes the anxiety response patterns of offspring. Psychoneuroendocrinology, 52, 153–167. doi: 10.1016/j.psyneuen.2014.10.021 First citation in articleCrossrefGoogle Scholar

  • Cordero, M. I., Poirier, G. L., Marquez, C., Veenit, V., Fontana, X., Salehi, B., … Sandi, C. (2012). Evidence for biological roots in the transgenerational transmission of intimate partner violence. Translational Psychiatry, 2, e106. doi: 10.1038/tp.2012.32 First citation in articleCrossrefGoogle Scholar

  • Coutellier, L., Friedrich, A. C., Failing, K. & Wurbel, H. (2008). Variations in the postnatal maternal environment in mice: Effects on maternal behaviour and behavioural and endocrine responses in the adult offspring. Physiology and Behavior, 93, 395–407. doi: 10.1016/j.physbeh.2007.09.008 First citation in articleCrossrefGoogle Scholar

  • Darnaudery, M., Dutriez, I., Viltart, O., Morley-Fletcher, S. & Maccari, S. (2004). Stress during gestation induces lasting effects on emotional reactivity of the dam rat. Behavioral Brain Research, 153, 211–216. doi: 10.1016/j.bbr.2003.12.001 First citation in articleCrossrefGoogle Scholar

  • Darnaudery, M., Perez-Martin, M., Belizaire, G., Maccari, S. & Garcia-Segura, L. M. (2006). Insulin-like growth factor 1 reduces age-related disorders induced by prenatal stress in female rats. Neurobiology of Aging, 27, 119–127. doi: 10.1016/j.neurobiolaging.2005.01.008 First citation in articleCrossrefGoogle Scholar

  • Davidson, R. J. & McEwen, B. S. (2012). Social influences on neuroplasticity: Stress and interventions to promote well-being. Nature Neuroscience, 15, 689–695. doi: 10.1038/nn.3093 First citation in articleCrossrefGoogle Scholar

  • Desplats, P. A. (2015). Perinatal programming of neurodevelopment: Epigenetic mechanisms and the prenatal shaping of the brain. Advances in Neurobiology, 10, 335–361. doi: 10.1007/978-1-4939-1372-5_16 First citation in articleCrossrefGoogle Scholar

  • Enthoven, L., Schmidt, M. V., Cheung, Y. H., van der Mark, M. H., de Kloet, E. R. & Oitzl, M. S. (2010). Ontogeny of the HPA axis of the CD1 mouse following 24 h maternal deprivation at pnd 3. International Journal of Developmental Neuroscience, 28, 217–224. doi: 10.1016/j.ijdevneu.2009.10.006 First citation in articleCrossrefGoogle Scholar

  • Fish, E. W., Shahrokh, D., Bagot, R., Caldji, C., Bredy, T., Szyf, M. & Meaney, M. J. (2004). Epigenetic programming of stress responses through variations in maternal care. Annals of the New York Academy of Sciences, 1036, 167–180. doi: 10.1196/annals.1330.011 First citation in articleCrossrefGoogle Scholar

  • Franklin, T. B., Russig, H., Weiss, I. C., Graff, J., Linder, N., Michalon, A., … Mansuy, I. M. (2010). Epigenetic transmission of the impact of early stress across generations. Biological Psychiatry, 68, 408–415. doi: 10.1016/j.biopsych.2010.05.036 First citation in articleCrossrefGoogle Scholar

  • Fuentes, S., Daviu, N., Gagliano, H., Garrido, P., Zelena, D., Monasterio, N., … Nadal, R. (2014). Sex-dependent effects of an early life treatment in rats that increases maternal care: Vulnerability or resilience?. Frontiers in Behavioral Neuroscience, 8, 56. doi: 10.3389/fnbeh.2014.00056 First citation in articleCrossrefGoogle Scholar

  • Garcia-Caceres, C., Lagunas, N., Calmarza-Font, I., Azcoitia, I., Diz-Chaves, Y., Garcia-Segura, L. M., … Chowen, J. A. (2010). Gender differences in the long-term effects of chronic prenatal stress on the HPA axis and hypothalamic structure in rats. Psychoneuroendocrinology, 35, 1525–1535. doi: 10.1016/j.psyneuen.2010.05.006 First citation in articleCrossrefGoogle Scholar

  • George, S. A., Stout, S. A., Tan, M., Knox, D. & Liberzon, I. (2013). Early handling attenuates enhancement of glucocorticoid receptors in the prefrontal cortex in an animal model of post-traumatic stress disorder. Biology of Mood & Anxiety Disorders, 3, 22. doi: 10.1186/2045-5380-3-22 First citation in articleCrossrefGoogle Scholar

  • Green, M. K., Rani, C. S., Joshi, A., Soto-Pina, A. E., Martinez, P. A., Frazer, A., … Morilak, D. A. (2011). Prenatal stress induces long term stress vulnerability, compromising stress response systems in the brain and impairing extinction of conditioned fear after adult stress. Neuroscience, 192, 438–451. doi: 10.1016/j.neuroscience.2011.06.041 First citation in articleCrossrefGoogle Scholar

  • Kapoor, A., Petropoulos, S. & Matthews, S. G. (2008). Fetal programming of hypothalamic-pituitary-adrenal (HPA) axis function and behavior by synthetic glucocorticoids. Brain Research Reviews, 57, 586–595. doi: 10.1016/j.brainresrev.2007.06.013 First citation in articleCrossrefGoogle Scholar

  • Koehl, M., Darnaudery, M., Dulluc, J., Van Reeth, O., Le Moal, M. & Maccari, S. (1999). Prenatal stress alters circadian activity of hypothalamo-pituitary-adrenal axis and hippocampal corticosteroid receptors in adult rats of both gender. Journal of Neurobiology, 40, 302–315. First citation in articleCrossrefGoogle Scholar

  • Laloux, C., Mairesse, J., Van Camp, G., Giovine, A., Branchi, I., Bouret, S., … Maccari, S. (2012). Anxiety-like behaviour and associated neurochemical and endocrinological alterations in male pups exposed to prenatal stress. Psychoneuroendocrinology, 37, 1646–1658. doi: 10.1016/j.psyneuen.2012.02.010 First citation in articleCrossrefGoogle Scholar

  • Lee, P. R., Brady, D. L., Shapiro, R. A., Dorsa, D. M. & Koenig, J. I. (2007). Prenatal stress generates deficits in rat social behavior: Reversal by oxytocin. Brain Research, 1156, 152–167. doi: 10.1016/j.brainres.2007.04.042 First citation in articleCrossrefGoogle Scholar

  • Levine, S. (2002). Regulation of the hypothalamic-pituitary-adrenal axis in the neonatal rat: The role of maternal behavior. Neurotoxicity Research, 4, 557–564. doi: 10.1080/10298420290030569 First citation in articleCrossrefGoogle Scholar

  • Levine, S., Alpert, M. & Lewis, G. W. (1957). Infantile experience and the maturation of the pituitary adrenal axis. Science, 126, 1347. First citation in articleCrossrefGoogle Scholar

  • Liberman, S. A., Mashoodh, R., Thompson, R. C., Dolinoy, D. C. & Champagne, F. A. (2012). Concordance in hippocampal and fecal Nr3c1 methylation is moderated by maternal behavior in the mouse. Ecology and Evolution, 2, 3123–3131. doi: 10.1002/ece3.416 First citation in articleCrossrefGoogle Scholar

  • Liebl, C., Panhuysen, M., Putz, B., Trumbach, D., Wurst, W., Deussing, J. M., … Schmidt, M. V. (2009). Gene expression profiling following maternal deprivation: Involvement of the brain Renin-Angiotensin system. Frontiers in Molecular Neuroscience, 2, 1. doi: 10.3389/neuro.02.001.2009 First citation in articleCrossrefGoogle Scholar

  • Liu, D., Caldji, C., Sharma, S., Plotsky, P. M. & Meaney, M. J. (2000). Influence of neonatal rearing conditions on stress-induced adrenocorticotropin responses and norepinepherine release in the hypothalamic paraventricular nucleus. Journal of Neuroendocrinology, 12, 5–12. First citation in articleCrossrefGoogle Scholar

  • Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., … Meaney, M. J. (1997). Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science, 277, 1659–1662. First citation in articleCrossrefGoogle Scholar

  • Loomans, E. M., van der Stelt, O., van Eijsden, M., Gemke, R. J., Vrijkotte, T. & den Bergh, B. R. (2011). Antenatal maternal anxiety is associated with problem behaviour at age five. Early Human Development, 87, 565–570. doi: 10.1016/j.earlhumdev.2011.04.014 First citation in articleCrossrefGoogle Scholar

  • Lu, X., Jin, C., Yang, J., Liu, Q., Wu, S., Li, D., … Cai, Y. (2013). Prenatal and lactational lead exposure enhanced oxidative stress and altered apoptosis status in offspring rats’ hippocampus. Biological Trace Element Research, 151, 75–84. doi: 10.1007/s12011-012-9531-5 First citation in articleCrossrefGoogle Scholar

  • Lucion, A. B., Pereira, F. M., Winkelman, E. C., Sanvitto, G. L. & Anselmo-Franci, J. A. (2003). Neonatal handling reduces the number of cells in the locus coeruleus of rats. Behavioral Neuroscience, 117, 894–903. doi: 10.1037/0735-7044.117.5.894 First citation in articleCrossrefGoogle Scholar

  • Lukas, M., Bredewold, R., Landgraf, R., Neumann, I. D. & Veenema, A. H. (2011). Early life stress impairs social recognition due to a blunted response of vasopressin release within the septum of adult male rats. Psychoneuroendocrinology, 36, 843–853. doi: 10.1016/j.psyneuen.2010.11.007 First citation in articleCrossrefGoogle Scholar

  • Maccari, S., Darnaudery, M., Morley-Fletcher, S., Zuena, A. R., Cinque, C. & Van Reeth, O. (2003). Prenatal stress and long-term consequences: implications of glucocorticoid hormones. Neuroscience & Biobehavioral Reviews, 27, 119–127. First citation in articleCrossrefGoogle Scholar

  • Maccari, S., Krugers, H. J., Morley-Fletcher, S., Szyf, M. & Brunton, P. J. (2014). The consequences of early-life adversity: Neurobiological, behavioural and epigenetic adaptations. Journal of Neuroendocrinology, 26, 707–723. doi: 10.1111/jne.12175 First citation in articleCrossrefGoogle Scholar

  • Mairesse, J., Van Camp, G., Gatta, E., Marrocco, J., Reynaert, M. L., Consolazione, M., … Maccari, S. (2015). Sleep in prenatally restraint stressed rats, a model of mixed anxiety-depressive disorder. Advances in Neurobiology, 10, 27–44. doi: 10.1007/978-1-4939-1372-5_2 First citation in articleCrossrefGoogle Scholar

  • Maniam, J. & Morris, M. J. (2010). Palatable cafeteria diet ameliorates anxiety and depression-like symptoms following an adverse early environment. Psychoneuroendocrinology, 35, 717–728. doi: 10.1016/j.psyneuen.2009.10.013 First citation in articleCrossrefGoogle Scholar

  • Markham, J. A., Taylor, A. R., Taylor, S. B., Bell, D. B. & Koenig, J. I. (2010). Characterization of the cognitive impairments induced by prenatal exposure to stress in the rat. Frontiers in Behavioral Neuroscience, 4, 173. doi: 10.3389/fnbeh.2010.00173 First citation in articleCrossrefGoogle Scholar

  • McGowan, P. O. (2012). Epigenetic clues to the biological embedding of early life adversity. Biological Psychiatry, 72, 4–5. doi: 10.1016/j.biopsych.2012.04.017 First citation in articleCrossrefGoogle Scholar

  • Melo, A. I. (2015). Role of sensory, social, and hormonal signals from the mother on the development of offspring. Advances in Neurobiology, 10, 219–248. doi: 10.1007/978-1-4939-1372-5_11 First citation in articleCrossrefGoogle Scholar

  • Morley-Fletcher, S., Darnaudery, M., Koehl, M., Casolini, P., Van Reeth, O. & Maccari, S. (2003). Prenatal stress in rats predicts immobility behavior in the forced swim test. Effects of a chronic treatment with tianeptine. Brain Research, 989, 246–251. First citation in articleGoogle Scholar

  • Morley-Fletcher, S., Mairesse, J., Soumier, A., Banasr, M., Fagioli, F., Gabriel, C., … Maccari, S. (2011). Chronic agomelatine treatment corrects behavioral, cellular, and biochemical abnormalities induced by prenatal stress in rats. Psychopharmacology (Berl), 217, 301–313. doi: 10.1007/s00213-011-2280-x First citation in articleCrossrefGoogle Scholar

  • Morley-Fletcher, S., Rea, M., Maccari, S. & Laviola, G. (2003). Environmental enrichment during adolescence reverses the effects of prenatal stress on play behaviour and HPA axis reactivity in rats. The European Journal of Neuroscience, 18, 3367–3374. First citation in articleCrossrefGoogle Scholar

  • Murgatroyd, C. & Spengler, D. (2011). Epigenetic programming of the HPA axis: Early life decides. Stress, 14, 581–589. doi: 10.3109/10253890.2011.602146 First citation in articleCrossrefGoogle Scholar

  • Murgatroyd, C. & Spengler, D. (2012). Genetic variation in the epigenetic machinery and mental health. Current Psychiatry Reports, 14, 138–149. doi: 10.1007/s11920-012-0255-1 First citation in articleCrossrefGoogle Scholar

  • Murgatroyd, C. & Spengler, D. (2014). Polycomb binding precedes early-life stress responsive DNA methylation at the Avp enhancer. PLoS One, 9, e90277. doi: 10.1371/journal.pone.0090277 First citation in articleCrossrefGoogle Scholar

  • Okada, A., Ariizumi, M. & Okamoto, G. (1985). Study on the mechanism of the appearance of noise effects. European Journal of Applied Physiology, 53, 364–367. First citation in articleCrossrefGoogle Scholar

  • Pan, P., Fleming, A. S., Lawson, D., Jenkins, J. M. & McGowan, P. O. (2014). Within- and between-litter maternal care alter behavior and gene regulation in female offspring. Behavioral Neuroscience, 128, 736–748. doi: 10.1037/bne0000014 First citation in articleCrossrefGoogle Scholar

  • Pena, C. J., Neugut, Y. D., Calarco, C. A. & Champagne, F. A. (2014). Effects of maternal care on the development of midbrain dopamine pathways and reward-directed behavior in female offspring. European Journal of Neuroscience, 39, 946–956. doi: 10.1111/ejn.12479 First citation in articleCrossrefGoogle Scholar

  • Pickering, C., Gustafsson, L., Cebere, A., Nylander, I. & Liljequist, S. (2006). Repeated maternal separation of male Wistar rats alters glutamate receptor expression in the hippocampus but not the prefrontal cortex. Brain Research, 1099, 101–108. doi: 10.1016/j.brainres.2006.04.136 First citation in articleCrossrefGoogle Scholar

  • Plescia, F., Marino, R. A., Navarra, M., Gambino, G., Brancato, A., Sardo, P. & Cannizzaro, C. (2014). Early handling effect on female rat spatial and non-spatial learning and memory. Behavioral Processes, 103, 9–16. doi: 10.1016/j.beproc.2013.10.011 First citation in articleCrossrefGoogle Scholar

  • Plotsky, P. M., Thrivikraman, K. V., Nemeroff, C. B., Caldji, C., Sharma, S. & Meaney, M. J. (2005). Long-term consequences of neonatal rearing on central corticotropin-releasing factor systems in adult male rat offspring. Neuropsychopharmacology, 30, 2192–2204. doi: 10.1038/sj.npp.1300769 First citation in articleCrossrefGoogle Scholar

  • Roque, S., Mesquita, A. R., Palha, J. A., Sousa, N. & Correia-Neves, M. (2014). The behavioral and immunological impact of maternal separation: A matter of timing. Frontiers in Behavioral Neuroscience, 8, 192. doi: 10.3389/fnbeh.2014.00192 First citation in articleCrossrefGoogle Scholar

  • Sampedro-Piquero, P., Zancada-Menendez, C., Begega, A., Rubio, S. & Arias, J. L. (2013). Effects of environmental enrichment on anxiety responses, spatial memory and cytochrome c oxidase activity in adult rats. Brain Research Bulletin, 98, 1–9. doi: 10.1016/j.brainresbull.2013.06.006 First citation in articleCrossrefGoogle Scholar

  • Schroeder, M., Sultany, T. & Weller, A. (2013). Prenatal stress effects on emotion regulation differ by genotype and sex in prepubertal rats. Developmental Psychobiology, 55, 176–192. doi: 10.1002/dev.21010 First citation in articleCrossrefGoogle Scholar

  • Sequeira-Cordero, A., Masis-Calvo, M., Mora-Gallegos, A. & Fornaguera-Trias, J. (2013). Maternal behavior as an early modulator of neurobehavioral offspring responses by Sprague-Dawley rats. Behavioural Brain Research, 237, 63–70. doi: 10.1016/j.bbr.2012.09.028 First citation in articleCrossrefGoogle Scholar

  • Shoemaker, R., Wang, W. & Zhang, K. (2011). Mediators and dynamics of DNA methylation. Wiley Interdisciplinary Reviews. Systems Biology and Medicine, 3, 281–298. doi: 10.1002/wsbm.124 First citation in articleCrossrefGoogle Scholar

  • Skripuletz, T., Kruschinski, C., Pabst, R., von Horsten, S. & Stephan, M. (2010). Postnatal experiences influence the behavior in adult male and female Fischer and Lewis rats. International Journal of Developmental Neuroscience, 28, 561–571. doi: 10.1016/j.ijdevneu.2010.07.235 First citation in articleCrossrefGoogle Scholar

  • Suzuki, M. M. & Bird, A. (2008). DNA methylation landscapes: Provocative insights from epigenomics. Nature Reviews: Genetics, 9, 465–476. doi: 10.1038/nrg2341 First citation in articleCrossrefGoogle Scholar

  • Szyf, M. (2013). DNA methylation, behavior and early life adversity. Journal of Genetics and Genomics, 40, 331–338. doi: 10.1016/j.jgg.2013.06.004 First citation in articleCrossrefGoogle Scholar

  • Teperek-Tkacz, M., Pasque, V., Gentsch, G. & Ferguson-Smith, A. C. (2011). Epigenetic reprogramming: Is deamination key to active DNA demethylation? Reproduction, 142, 621–632. doi: 10.1530/REP-11-0148 First citation in articleCrossrefGoogle Scholar

  • Turecki, G. & Meaney, M. J. (2014). Effects of the social environment and stress on glucocorticoid receptor gene methylation: A systematic review. Biological Psychiatry, Advance online publication. doi: 10.1016/j.biopsych.2014.11.022 First citation in articleCrossrefGoogle Scholar

  • Tyrka, A. R., Parade, S. H., Price, L. H., Kao, H. T., Porton, B., Philip, N. S., … Carpenter, L. L. (2015). Alterations of mitochondrial DNA copy number and telomere length with early adversity and psychopathology. Biological Psychiatry, Advance online publication. doi: 10.1016/j.biopsych.2014.12.025 First citation in articleCrossrefGoogle Scholar

  • Vallee, M., Mayo, W., Dellu, F., Le Moal, M., Simon, H. & Maccari, S. (1997). Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring: Correlation with stress-induced corticosterone secretion. Journal of Neuroscience, 17, 2626–2636. First citation in articleGoogle Scholar

  • Vallee, M., Mayo, W., Maccari, S., Le Moal, M. & Simon, H. (1996). Long-term effects of prenatal stress and handling on metabolic parameters: Relationship to corticosterone secretion response. Brain Research, 712, 287–292. First citation in articleCrossrefGoogle Scholar

  • Van den Hove, D. L., Leibold, N. K., Strackx, E., Martinez-Claros, M., Lesch, K. P., Steinbusch, H. W., … Prickaerts, J. (2014). Prenatal stress and subsequent exposure to chronic mild stress in rats; interdependent effects on emotional behavior and the serotonergic system. European Neuropsychopharmacology, 24, 595–607. doi: 10.1016/j.euroneuro.2013.09.006 First citation in articleCrossrefGoogle Scholar

  • Veenema, A. H., Blume, A., Niederle, D., Buwalda, B. & Neumann, I. D. (2006). Effects of early life stress on adult male aggression and hypothalamic vasopressin and serotonin. European Journal of Neuroscience, 24, 1711–1720. doi: 10.1111/j.1460-9568.2006.05045.x First citation in articleCrossrefGoogle Scholar

  • Veenema, A. H. & Neumann, I. D. (2009). Maternal separation enhances offensive play-fighting, basal corticosterone and hypothalamic vasopressin mRNA expression in juvenile male rats. Psychoneuroendocrinology, 34, 463–467. doi: 10.1016/j.psyneuen.2008.10.017 First citation in articleCrossrefGoogle Scholar

  • Wang, A., Nie, W., Li, H., Hou, Y., Yu, Z., Fan, Q. & Sun, R. (2014). Epigenetic upregulation of corticotrophin-releasing hormone mediates postnatal maternal separation-induced memory deficiency. PLoS One, 9, e94394. doi: 10.1371/journal.pone.0094394 First citation in articleCrossrefGoogle Scholar

  • Weaver, I. C., Champagne, F. A., Brown, S. E., Dymov, S., Sharma, S., Meaney, M. J. & Szyf, M. (2005). Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: Altering epigenetic marking later in life. Journal of Neuroscience, 25, 11045–11054. doi: 10.1523/JNEUROSCI.3652-05.2005 First citation in articleCrossrefGoogle Scholar

  • Weaver, I. C., La Plante, P., Weaver, S., Parent, A., Sharma, S., Diorio, J., … Meaney, M. J. (2001). Early environmental regulation of hippocampal glucocorticoid receptor gene expression: Characterization of intracellular mediators and potential genomic target sites. Molecular and Cell Endocrinolgy, 185, 205–218. First citation in articleCrossrefGoogle Scholar

  • Weaver, I. C., Meaney, M. J. & Szyf, M. (2006). Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood. Proceedings of the National Academy of Sciences of the United States of America, 103, 3480–3485. doi: 10.1073/pnas.0507526103 First citation in articleCrossrefGoogle Scholar

  • Weinstock, M., Matlina, E., Maor, G. I., Rosen, H. & McEwen, B. S. (1992). Prenatal stress selectively alters the reactivity of the hypothalamic-pituitary adrenal system in the female rat. Brain Research, 595, 195–200. First citation in articleCrossrefGoogle Scholar

  • Wilcoxon, J. S. & Redei, E. E. (2007). Maternal glucocorticoid deficit affects hypothalamic-pituitary-adrenal function and behavior of rat offspring. Hormones and Behavior, 51, 321–327. doi: 10.1016/j.yhbeh.2006.11.006 First citation in articleCrossrefGoogle Scholar

  • Yu, I. T., Lee, S. H., Lee, Y. S. & Son, H. (2004). Differential effects of corticosterone and dexamethasone on hippocampal neurogenesis in vitro. Biochemical and Biophysical Research Communications, 317, 484–490. doi: 10.1016/j.bbrc.2004.03.071 First citation in articleCrossrefGoogle Scholar

  • Zagron, G. & Weinstock, M. (2006). Maternal adrenal hormone secretion mediates behavioural alterations induced by prenatal stress in male and female rats. Behavioral Brain Research, 175, 323–328. doi: 10.1016/j.bbr.2006.09.003 First citation in articleCrossrefGoogle Scholar

  • Zohsel, K., Buchmann, A. F., Blomeyer, D., Hohm, E., Schmidt, M. H., Esser, G., … Laucht, M. (2014). Mothers’ prenatal stress and their children’s antisocial outcomes – a moderating role for the dopamine D4 receptor (DRD4) gene. Journal of Child Psychology and Psychiatry, 55, 69–76. doi: 10.1111/jcpp.12138 First citation in articleCrossrefGoogle Scholar