Skip to main content
Original Article

Exploring Residual Capacity

The Effectiveness of a Vibrotactile Warning During Increasing Levels of Mental Workload in Simulated Flight Tasks

Published Online:https://doi.org/10.1027/2192-0923/a000180

Abstract. Alarm systems may take advantage of the tactile modality for allocation of attentional resources during the performance of demanding tasks in complex environments. The purpose of this study was to determine the effectiveness of a tactile warning during increasing levels of mental workload in a primary task. Three simulated flight task conditions varying in mental workload were presented while an “on-thigh” vibrotactile warning was randomly assessed. Generally, there was a decrement in overall warning response performance when task workload increased, but this tendency faded and plateaued as the level of task workload progressed. The observed pattern indicates that vibrotactile warning signals may offer a plausible mode for conveying information during increasing levels of primary task workload.

References

  • Bliss, J. P. (2003). Investigation of alarm-related accidents and incidents in aviation. The International Journal of Aviation Psychology, 13(3), 249–268. https://doi.org/10.1207/s15327108ijap1303_04 First citation in articleCrossrefGoogle Scholar

  • Borst, J. P., Taatgen, N. A., & van Rijn, H. (2010). The problem state: A cognitive bottleneck in multitasking. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(2), 363–382. https://doi.org/10.1037/a0018106 First citation in articleCrossrefGoogle Scholar

  • Cain, B. (2007). A review of the mental workload literature (Technical Report No. 0704–0188). Toronto, Canada: Defense Research and Development First citation in articleGoogle Scholar

  • Causse, M., Imbert, J. P., Giraudet, L., Jouffrais, C., & Tremblay, S. (2016). The role of cognitive and perceptual loads in inattentional deafness. Frontiers in Human Neuroscience, 10, 344. https://doi.org/10.3389/fnhum.2016.00344 First citation in articleCrossrefGoogle Scholar

  • Chan, J. S., & Newell, F. N. (2008). Behavioral evidence for task-dependent “what” versus “where” processing within and across modalities. Perception & Psychophysics, 70(1), 36–49. https://doi.org/10.3758/pp.70.1.36 First citation in articleCrossrefGoogle Scholar

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). New York, NY: Academic Press. First citation in articleGoogle Scholar

  • Colcombe, A., & Wickens, C. D. (2006). Cockpit display of traffic information automated conflict alerting: Parameters to maximize effectiveness and minimize disruption in multi-task environments (Technical Report No. AHFD-05–22/NASA-05–9). Moffet Field, CA: NASA Ames Research Center. First citation in articleGoogle Scholar

  • Eriksson, L., Van Erp, J., Carlander, O., Levin, B., van Veen, H., & Veltman, H. (2006). Vibrotactile and visual threat cueing with high-G threat intercept in dynamic flight simulation. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 50(16), 1547–1551. https://doi.org/10.1177/154193120605001607 First citation in articleCrossrefGoogle Scholar

  • Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. https://doi.org/10.3758/bf03193146 First citation in articleCrossrefGoogle Scholar

  • Fitch, G. M., Kiefer, R. J., Hankey, J. M., & Kleiner, B. M. (2007). Toward developing an approach for alerting drivers to the direction of a crash threat. Human Factors, 49(4), 710–720. https://doi.org/10.1518/001872007x215782 First citation in articleCrossrefGoogle Scholar

  • Gallace, A., & Spence, C. (2007). The cognitive and neural correlates of tactile consciousness: A multisensory perspective. Consciousness and Cognition, 17, 370–407. https://doi.org/10.1016/j.concog.2007.01.005 First citation in articleCrossrefGoogle Scholar

  • Giraudet, L., St-Louis, M. E., Scannella, S., & Causse, M. (2015). P300 event-related potential as an indicator of inattentional deafness? PLoS One, 10(2), e0118556. https://doi.org/10.1371/journal.pone.0118556 First citation in articleCrossrefGoogle Scholar

  • Gopher, D., & Braune, R. (1984). On the psychophysics of workload: Why bother with subjective measures? Human Factors, 26(5), 519–532. https://doi.org/10.1177/001872088402600504 First citation in articleCrossrefGoogle Scholar

  • Gopher, D., & Donchin, E. (1986). Workload: An examination of the concept. In K. R. BoffL. KaufmanJ. P. ThomasEds., Handbook of perception and human performance (pp. 41–43). New York: John Wiley & Sons. First citation in articleGoogle Scholar

  • Hale, K. S., & Stanney, K. M. (2004). Haptic rendering–beyond visual computing–Deriving haptic design guidelines from human physiological, psychophysical and neurological foundations. IEEE Computer Graphics and Applications, 24(2), 33–39. https://doi.org/10.1109/mcg.2004.1274059 First citation in articleCrossrefGoogle Scholar

  • Ho, C., Reed, N., & Spence, C. (2006). Assessing the effectiveness of “intuitive” vibrotactile warning signals in preventing front-to-rear-end collisions in a driving simulator. Accident Analysis & Prevention, 38(5), 988–996. https://doi.org/10.1016/j.aap.2006.04.002 First citation in articleCrossrefGoogle Scholar

  • Huey, F. M., & Wickens, C. D. (1993). Workload transition: Implications for individual and team performance. Washington, DC: National Academy Press. First citation in articleGoogle Scholar

  • Jex, H. R. (1988). Measuring mental workload: Problems, progress, and promise. In P. HancockN. MeshkatiEds., Human mental workload (pp. 5–39). Amsterdam, The Netherlands: North-Holland. https://doi.org/10.1016/s0166-4115(08)62381-x First citation in articleGoogle Scholar

  • Jones, L. A., & Sarter, N. B. (2008). Tactile displays: Guidance for their design and application. Human Factors, 50(1), 90–111. https://doi.org/10.1518/001872008x250638 First citation in articleCrossrefGoogle Scholar

  • Ljungberg, J. K., & Parmentier, F. (2012). Cross-modal distraction by deviance: Functional similarities between the auditory and tactile modalities. Experimental Psychology, 59(6), 355–363. https://doi.org/10.1027/1618-3169/a000164 First citation in articleLinkGoogle Scholar

  • Lysaght, R. J., Hill, S. G., Dick, A. O., Plamondon, B. D., & Linton, P. M. (1989). Operator workload: Comprehensive review and evaluation of operator workload methodologies (Technical Report No. 2075-3). Willow Grove, PA: U.S. Army Research Institute for the Behavioral and Social Sciences. https://doi.org/10.21236/ada212879 First citation in articleCrossrefGoogle Scholar

  • Moray, N. (1967). Where is capacity limited? A survey and a model. Acta Psychologica, 27, 84–92. First citation in articleCrossrefGoogle Scholar

  • Oviatt, S. (2003). Multimodal interfaces. In J. JackoA. SearsEds., Handbook of human-computer interaction (pp. 286–304). Hillsdale, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Parasuraman, R., & Hancock, P. A. (1999). Using signal detection theory and Bayesian analysis to design parameters for automated alarm systems. In M. ScerboM. MoulouaEds., Automation Technology and Human Performance: Current Research and Trends (pp. 63–67). Mahwah, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Parasuraman, R., & Hancock, P. A. (2001). Adaptive control and mental workload. In P. A. HancockP. A. DesmondEds., Stress, workload and fatigue: Human factors in transportation (pp. 305–320). Mahwah, NJ: Lawrence Erlbaum Associates. First citation in articleGoogle Scholar

  • Parmentier, F., Ljungberg, J. K., Elsley, J. V., & Lindkvist, M. (2011). A behavioral study of distraction by vibrotactile novelty. Journal of Experimental Psychology: Human Perception and Performance, 37(4), 1134–1139. https://doi.org/10.1037/a0021931 First citation in articleCrossrefGoogle Scholar

  • Peirce, J. W. (2007). PsychoPy–Psychophysics software in Python. Journal of Neuroscience Methods, 162(1–2). (8–13). https://doi.org/10.1016/j.jneumeth.2006.11.017 First citation in articleCrossrefGoogle Scholar

  • Salvucci, D. D. (2005). A multitasking general executive for compound continuous tasks. Cognitive Science, 29(3), 457–492. https://doi.org/10.1207/s15516709cog0000_19 First citation in articleCrossrefGoogle Scholar

  • Salvucci, D. D. (2006). Modeling driver behavior in a cognitive architecture. Human Factors: The Journal of the Human Factors and Ergonomics Society, 48(2), 362–380. https://doi.org/10.1518/001872006777724417 First citation in articleCrossrefGoogle Scholar

  • Salvucci, D. D., & Taatgen, N. A. (2008). Threaded cognition: An integrated theory of concurrent multitasking. Psychological Review, 115(1), 101–130. https://doi.org/10.1037/0033-295X.115.1.101 First citation in articleCrossrefGoogle Scholar

  • Salzer, Y., & Oron-Gilad, T. (2012). A comparison of ‘on-thigh’ vibrotactile, combined visual-vibrotactile, and visual-only alerting systems for the cockpit under visually demanding conditions. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 56(1), 1644–1648. https://doi.org/10.1177/1071181312561329 First citation in articleCrossrefGoogle Scholar

  • Salzer, Y., Oron-Gilad, T., Ronen, A., & Parmet, Y. (2011). Vibrotactile “on-thigh” alerting system in the cockpit. Human Factors, 53(2), 118–131. https://doi.org/10.1177/0018720811403139 First citation in articleCrossrefGoogle Scholar

  • Santangelo, V., Ho, C., & Spence, C. (2008). Capturing spatial attention with multisensory cues. Psychonomic Bulletin & Review, 15, 398–403. https://doi.org/10.3758/pbr.15.2.398 First citation in articleCrossrefGoogle Scholar

  • Sarter, N. B. (2002). Multimodal information presentation in support of human-automation communication and coordination. In E. SalasEd., Advances in human performance and cognitive engineering research (pp. 13–36). New York: JAI Press. https://doi.org/10.1016/s1479-3601(02)02004-0 First citation in articleGoogle Scholar

  • Sarter, N. B. (2006). Multimodal information presentation: Design guidance and research challenges. International Journal of Industrial Ergonomics, 36(5), 439–445. https://doi.org/10.1016/j.ergon.2006.01.007 First citation in articleCrossrefGoogle Scholar

  • Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: Detection, search, and attention. Psychological Review, 84(1), 1–66. https://doi.org/10.1037/0033-295x.84.1.1 First citation in articleCrossrefGoogle Scholar

  • Scott, J. J., & Gray, R. (2008). A comparison of tactile, visual, and auditory warnings for rear-end collision prevention in simulated driving. Human Factors, 50(2), 264–275. https://doi.org/10.1518/001872008X250674 First citation in articleCrossrefGoogle Scholar

  • Sklar, A. E., & Sarter, N. B. (1999). Good vibrations: Tactile feedback in support of attention allocation and human-automation coordination in event-driven domains. Human Factors, 41(4), 543–552. https://doi.org/10.1518/001872099779656716 First citation in articleCrossrefGoogle Scholar

  • Spence, C., & Driver, J. (1997). Cross-modal links in attention between audition, vision, and touch: Implications for interface design. International Journal of Cognitive Ergonomics, 1(4), 351–373. Retrieved from http://psycnet.apa.org/record/1999-10777-005 First citation in articleGoogle Scholar

  • Taatgen, N. A., & Lee, F. J. (2003). Production compilation: A simple mechanism to model complex skill acquisition. Human Factors, 45(1), 61–76. https://doi.org/10.1518/hfes.45.1.61.27224 First citation in articleCrossrefGoogle Scholar

  • Tang, A., McLachlan, P., Lowe, K., Saka, C. R., & MacLean, K. (2005). Perceiving ordinal data haptically under workload. In ACMEds., Proceedings of the 7th international conference on Multimodal Interfaces (pp. 317–324). New York, NY: ACM. https://doi.org/10.1145/1088463.1088517 First citation in articleGoogle Scholar

  • Thorne, D. R. (2006). Throughput: A simple performance index with desirable characteristics. Behavior Research Methods, 38(4), 569–573. https://doi.org/10.3758/BF03193886 First citation in articleCrossrefGoogle Scholar

  • Tyler, R. R., Schilling, R. D., & Gilson, R. D. (1995). False alarms in naval aircraft: A review of naval safety center mishap data (Special Report No 95–003). Orlando, FL: Naval Air Warfare Center Training Systems Division. First citation in articleGoogle Scholar

  • Vandierendonck, A. (2018). Further tests of the utility of integrated speed-accuracy measures in task switching. Journal of Cognition, 1(1), 1–16. https://doi.org/10.5334/joc.6 First citation in articleCrossrefGoogle Scholar

  • Van Erp, J. B. F., Groen, E. L., Bos, J. E., & Van Veen, H. A. H. C. (2006). A tactile cockpit instrument supports the control of self-motion during spatial disorientation. Human Factors, 48(2), 219–228. https://doi.org/10.1518/001872006777724435 First citation in articleCrossrefGoogle Scholar

  • Van Erp, J. B. F., Van Veen, H. A. H. C., Jansen, C., & Dobbins, T. (2005). Waypoint navigation with a vibrotactile waist belt. ACM Transactions on Applied Perception, 2(2), 106–117. https://doi.org/10.1145/1060581.1060585 First citation in articleCrossrefGoogle Scholar

  • Van Erp, J. B. F., Veltman, J. A., Van Veen, H. A. H. C., & Oving, A. B. (2002, April). Tactile torso display as countermeasure to reduce night vision goggles induced drift. Paper presented at the meeting of Spatial disorientation in military vehicles: Causes, consequences and cures, NATO Research and Technology Organization, Neuilly-sur Seine, France. https://doi.org/10.1007/3-540-44589-7_19 First citation in articleGoogle Scholar

  • Van Veen, H. A., Spapé, M., & Van Erp, J. B. F. (2004). Waypoint navigation on land: Different ways of coding distance to the next waypoint. In M. BussM. FritschiH. EsenEds., Proceedings of EuroHaptics 2004 (pp. 160–165). Munich, Germany: Technische Universität München. First citation in articleGoogle Scholar

  • Van Veen, H. A., & Van Erp, J. B. (2001). Tactile information presentation in the cockpit. In S. BrewsterR. Murray-SmithEds., Haptic human-computer interaction (pp. 174–181). Berlin, Germany: Springer. First citation in articleGoogle Scholar

  • Wahn, B., & König, P. (2015a). Audition and vision share spatial attentional resources, yet attentional load does not disrupt audiovisual integration. Frontiers in Psychology, 6(July), 1–12. https://doi.org/10.3389/fpsyg.2015.01084 First citation in articleGoogle Scholar

  • Wahn, B., & König, P. (2015b). Vision and haptics share spatial attentional resources and visuotactile integration is not affected by high attentional load. Multisensory Research, 28, 371–392. https://doi.org/10.1163/22134808-00002482 First citation in articleCrossrefGoogle Scholar

  • Wahn, B., & König, P. (2016) Attentional resource allocation in visuotactile processing depends on the task, but optimal visuotactile integration does not depend on attentional resources. Frontiers in Integrative Neuroscience, 10(March), 1–13. https://doi.org/10.3389/fnint.2016.00013 First citation in articleGoogle Scholar

  • Wahn, B., & König, P. (2017). Is attentional resource allocation across sensory modalities task-dependent? Advances in Cognitive Psychology, 13(1), 83–96. https://doi.org/10.5709/acp-0209-2 First citation in articleCrossrefGoogle Scholar

  • Wickens, C. D. (2002). Multiple resources and performance prediction. Theoretical Issues in Ergonomics Science, 3(2), 159–177. https://doi.org/10.1080/14639220210123806 First citation in articleCrossrefGoogle Scholar

  • Wickens, C., & Colcombe, A. (2007). Dual-task performance consequences of imperfect alerting associated with a cockpit display of traffic information. Human Factors, 49(5), 839–850. https://doi.org/10.1518/001872007X230217 First citation in articleCrossrefGoogle Scholar

  • Wilska, A. (1954). On the vibrational sensitivity in different regions of the body surface. Acta Physiologica Scandinavica, 31, 285–289. https://doi.org/10.1111/j.1748-1716.1954.tb01139.x First citation in articleCrossrefGoogle Scholar

  • Young, M. S., Brookhuis, K. A., Wickens, C. D., & Hancock, P. A. (2015). State of science: mental workload in ergonomics. Ergonomics, 58(1), 1–17. https://doi.org/10.1080/00140139.2014.956151 First citation in articleCrossrefGoogle Scholar