Skip to main content
Original Communication

Resveratrol does not affect leptin while it has regulatory effects on liver glycogen levels in exercised and non-exercised rats

Published Online:https://doi.org/10.1024/0300-9831/a000397

Abstract. Resveratrol (RES) is a well-known phytocompound and food component which has antioxidative and multifunctional bioactivities. The present study aims to examine how resveratrol administration affects plasma leptin and liver glycogen levels in rats subjected to an acute swimming exercise bout. The study was carried out on Wistar-Albino type adult male rats, each group include 7 rats. Group 1, Control Group. Group 2, Control Swimming Group: The group fed on a standard diet and subjected to an acute swimming exercise bout for 30 minutes at the end of the study. Group 3, Resveratrol Group: The group fed on a standard diet and given (10 mg/kg) resveratrol in drinking water for four weeks. Group 4, Resveratrol + Swimming Group: The group fed on a standard diet, given (10 mg/kg) resveratrol in drinking water for four weeks and subjected to a 30-minute acute swimming exercise at the end of the study. Plasma leptin levels using ELISA method (ng/l) and liver glycogen levels were determined by using histochemical method (number/0.1 mm2). Four weeks resveratrol administration to exercised and not-exercised rats did not cause a change in plasma leptin levels. Liver glycogen levels were 17.00 ± 3.16; 14.12 ± 2.98; 20.82 ± 1.97; 16.38 ± 1.27 (mean ± sd); respectively in groups 1, 2, 3, 4. Resveratrol administration to rats subjected to a bout of acute swimming exercise produced an effect that prevented the decrease in liver glycogen (p < 0.05). The study highlights that resveratrol supplementation may have regulatory effects on liver glycogen levels in exercised and non-exercised rats.

References

  • 1 Park, H.K., & Ahima, R.S. (2015) Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism. Metabolism. 64, 24–34. First citation in articleCrossref MedlineGoogle Scholar

  • 2 Martínez-Carrillo, B.E., Jarillo-Luna, R.A., Campos-Rodríguez, R., Valdés-Ramos, R., & Rivera-Aguilar, V. (2015) Effect of diet and exercise on the peripheral immune system in young Balb/c Mice. Biomed. Res. Int. 2015, 458470. First citation in articleCrossref MedlineGoogle Scholar

  • 3 Oh, T.W., Igawa, S., & Naka, T. (2015) Effects of skim milk powder intake and treadmill training exercise on renal, bone and metabolic parameters in aged obese rats. J. Exerc. Nutrition Biochem. 19, 247–254. First citation in articleCrossref MedlineGoogle Scholar

  • 4 Acosta, W., Meek, T.H., Schutz, H., Dlugosz, E.M., Vu, K.T., & Garland, T. Jr. (2015) Effects of early-onset voluntary exercise on adult physical activity and associated phenotypes in mice. Physiol. Behav. 149, 279–86. First citation in articleCrossref MedlineGoogle Scholar

  • 5 Van Aggel-Leijssen, D.P., Van Baak, M.A., Tenenbaum, R., Campfield, L.A., & Saris, W.H. (1999) Regulation of average 24 h human plasma leptin level; the influence of exercise and physiological changes in energy balance. Int. J. Obes. Relat. Metab. Disord. 23, 151–158. First citation in articleCrossref MedlineGoogle Scholar

  • 6 Hickey, M.S., & Calsbeek, D.J. (2001) Plasma leptin and exercise. Sports Med. 31, 583–589. First citation in articleCrossref MedlineGoogle Scholar

  • 7 Nindl, B.C., Kraemer, W.J., Arciero, P.J., Samatallee, N., Leone, C.D., Mayo, M.F., Hafeman Ogueh, O., Sooranna, S., Nocolaides, K.H., & Johnson, M.R. (2000) The relationship between leptin concentration and bone metabolism in the human fetus. J. Clin. Endocrinol. Metabol. 85, 1997–1999. First citation in articleCrossref MedlineGoogle Scholar

  • 8 Karamouzis, I., Karamouzis, M., Vrabas, I.S., Christoulas, K., Kyriazis, N., Giannoulis, E., & Mandroukas, K. The effects of marathon swimming on serum leptin and plasma neuropeptide Y levels. Clin. Chem. Lab. Med. 40, 132–136. First citation in articleMedlineGoogle Scholar

  • 9 Zaccaria, M., Ermoloa, A., Roi, S., Englaro, P., Tegon, G., & Varnier, M. (2002) Leptin reduction after endurance races differing in duration and energy expenditure. Eur. J. Appl. Physiol. 87, 108–111. First citation in articleCrossref MedlineGoogle Scholar

  • 10 Pagano, C., Marzolo, M., Granzotto, M., Ricquier, D., Federspil, G., & Vettor, R. (1999) Acute effects of exercise on circulating leptin in lean and genetically obese fa/fa rats. Biochem. Biophys. Res. Commun. 255, 698–702. First citation in articleCrossref MedlineGoogle Scholar

  • 11 Dolinsky, V.W., & Dyck, J.R. (2014) Experimental studies of the molecular pathways regulated by exercise and resveratrol in heart, skeletal muscle and the vasculature. Molecules. 19, 14919–14947. First citation in articleCrossref MedlineGoogle Scholar

  • 12 Baltaci, S.B., Mogulkoc, R., & Baltaci, A.K. (2016) Resveratrol and exercise. Biomed. Rep. 5, 525–530. First citation in articleCrossref MedlineGoogle Scholar

  • 13 Soleas, G.J., Grass, L., Josephy, P.D., Goldberg, D.M., & Diamandis, E.P. (2002) A comparison of the anticarcinogenic properties of four red wine polyphenols. Clin. Biochem. 35, 119–124. First citation in articleCrossref MedlineGoogle Scholar

  • 14 Matsumura, A., Ghosh, A., Pope, G.S., & Darbre, P.D. (2005) Comparative study of oestrogenic-properties of eight phytoestrogens in MCF7 human breast cancer cells. J. Steroid. Biochem. Mol. Biol. 94, 431–443. First citation in articleCrossref MedlineGoogle Scholar

  • 15 Tegos, G., Stermitz, F.R., Lomovskaya, O., & Lewis, K. (2002) Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Antimicrob. Agents. Chemother. 46, 3133–31341. First citation in articleCrossref MedlineGoogle Scholar

  • 16 Straczkowski, M., Kowalska, I., Górski, J., & Kinalska, I. (2000) The effect of a single bout of exhaustive exercise on muscle carbohydrate and lipid metabolism in a rat model of type 2 diabetes mellitus. Acta. Diabetol. 37, 47–53. First citation in articleCrossref MedlineGoogle Scholar

  • 17 Petersen, K.F., Price, T.B., & Bergeron, R. (2004) Regulation of net hepatic glycogenolysis and gluconeogenesis during exercise: impact of type 1 diabetes. J. Clin. Endocrinol. Metab. 89, 4656–4664. First citation in articleCrossref MedlineGoogle Scholar

  • 18 Fritsche, L., Weigert, C., Häring, H.U., & Lehmann, R. (2008) How insulin receptor substrate proteins regulate the metabolic capacity of the liver – implications for health and disease. Curr. Med. Chem. 15, 1316–1329. First citation in articleCrossref MedlineGoogle Scholar

  • 19 Corigliano, G., Iazzetta, N., Corigliano, M., & Strollo, F. (2006) Blood glucose changes in diabetic children and adolescents engaged in most common sports activities. Acta. Biomed. 77, 26–33. First citation in articleMedlineGoogle Scholar

  • 20 Schwer, B., & Verdin, E. (2008) Conserved metabolic regulatory functions of sirtuins. Cell Metab. 7, 104–112. First citation in articleCrossref MedlineGoogle Scholar

  • 21 Girbovan, C., Morin, L., & Plamondon, H. (2012) Repeated resveratrol administration confers lasting protection against neuronal damage but induces dose-related alterations of behavioral impairments after global ischemia. Behav Pharmacol. 23, 1–13. First citation in articleCrossref MedlineGoogle Scholar

  • 22 Hilton, L.K., & Loucks, A.B. (2000) Low energy availability, not exercise stress, suppresses the diurnal rhythm of leptin in healthy young women. Am. J. Physiol. Endocrinol. Metab. 278, E43–E49. First citation in articleCrossref MedlineGoogle Scholar

  • 23 Franco, J.G., Lisboa, P.C., da Silva Lima, N., Peixoto-Silva, N., Maia, L.A., Oliveira, E., Passos, M.C., & de Moura, E.G. (2014) Resveratrol prevents hyperleptinemia and central leptin resistance in adult rats programmed by early weaning. Horm. Metab. Res. 46, 728–735. First citation in articleCrossref MedlineGoogle Scholar

  • 24 Eseberri, I., Lasa, A., Churruca, I., & Portillo, M.P. (2013) Resveratrol metabolites modify adipokine ester suppresses the production of adipocytokines, leptin, tumor necrosis factor -alpha and expression and secretion in 3T3–L1 pre-adipocytes and mature adipocytes. PLoS One. 8, e63918. First citation in articleCrossref MedlineGoogle Scholar

  • 25 Juman, S., Yasui, N., Okuda, H., Ueda, A., Negishi, H., Miki, T., & Ikeda, K. (2011) Caffeic acid phenethyl ester suppresses the production of adipocytokines, leptin, tumor necrosis factor-alpha and resistin, during differentiation to adipocytes in 3T3–L1 cells. Biol. Pharm. Bull. 34, 490–494. First citation in articleCrossref MedlineGoogle Scholar

  • 26 Fritsche, L., Weigert, C., Häring, H.U., & Lehmann, R. (2008) How insulin receptor substrate proteins regulate the metabolic capacity of the liver – implications for health and disease. Curr. Med. Chem. 15, 1316–1329. First citation in articleCrossref MedlineGoogle Scholar

  • 27 Petersen, K.F., Price, T.B., & Bergeron, R. (2004) Regulation of net hepatic glycogenolysis and gluconeogenesis during exercise: impact of type 1 diabetes. J. Clin. Endocrinol. Metab. 89, 4656–4664. First citation in articleCrossref MedlineGoogle Scholar

  • 28 Scribbans, T.D., Ma, J.K., Edgett, B.A., Vorobej, K.A., Mitchell, A.S., Zelt, J.G., Simpson, C.A., Quadrilatero, J., & Gurd, B.J. (2014) Resveratrol supplementation does not augment performance adaptations or fibre-type-specific responses to high-intensity interval training in humans. Appl. Physiol. Nutr. Metab. 39, 1305–1313. First citation in articleCrossref MedlineGoogle Scholar

  • 29 Ahmad, A., & Ahmad, R. (2014) Resveratrol mitigate structural changes and hepatic stellate cell activation in N’-nitrosodimethylamine-induced liver fibrosis via restraining oxidative damage. Chem. Biol. Interact. 221C, 1–12. First citation in articleCrossrefGoogle Scholar

  • 30 Wu, R.E., Huang, W.C., Liao, C.C., Chang, Y.K., Kan, N.W., & Huang, C.C. (2013) Resveratrol protects against physical fatigue and improves exercise performance in mice. Molecules. 18, 4689–4702. First citation in articleCrossref MedlineGoogle Scholar

  • 31 Ryan, M.J., Jackson, J.R., Hao, Y., Williamson, C.L., Dabkowski, E.R., Hollander, J.M., & Alway, S.E. (2010) Suppression of oxidative stress by resveratrol after isometric contractions in gastrocnemius muscles of aged mice. J. Gerontol. A. Biol. Sci. Med. Sci. 65, 815–831. First citation in articleCrossref MedlineGoogle Scholar

  • 32 Sun, M., Qian, F., Shen, W., Tian, C., Hao, J., Sun, L., & Liu, J. (2012) Mitochondrial nutrients stimulate performance and mitochondrial biogenesis in exhaustively exercised rats. Scand. J. Med. Sci. Sports. 22, 764–775. First citation in articleCrossref MedlineGoogle Scholar

  • 33 Bicer, M., Baltaci, S.B., Mogulkoc, R., Baltaci, A.K., & Avunduk, M.C. (2019) Effect of resveratrol administration on muscle glycogen levels in rats subjected to acute swimming exercise. Cell Mol. Biol. (Noisy-le-grand). 65, 28–31. First citation in articleCrossref MedlineGoogle Scholar