Skip to main content
Original Communication

Naturally occurring rare sugars are free radical scavengers and can ameliorate endoplasmic reticulum stress

Published Online:https://doi.org/10.1024/0300-9831/a000517

Abstract. Because of potential use of naturally occurring rare sugars as sweeteners, their effect on superoxide (SO), hydroxyl and peroxyl radicals and endoplasmic reticulum (ER) stress was examined in human coronary artery endothelial cells. SO generation was measured using the superoxide-reactive probe 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one hydrochloride chemiluminescence. Phycoerythrin fluorescence based assay was used to monitor scavenging activity of sugars in the presence of hydroxyl or peroxyl radical generators [CuSO4 and azobis (2 amidinopropane) hydrochloride respectively]. Measurements were made in relative light units (RLU). ER stress was measured with an ER stress-sensitive secreted alkaline phosphatase (SAP) assay and by Western blot analysis of the expression and phosphorylation of key proteins in the unfolded protein response, namely CHOP47, eIF2α and JNK1. D-Glucose (27.5 mM) increased SO generation (5536 ± 283 vs. 2963 ± 205 RLU in controls; p < 0.0007) and decreased SAP secretion (73411 ± 3971 vs. 101749 ± 7652 RLU in controls; p < 0.005) indicating ER stress. Treatment of cells with 5.5 or 27.5 mM of D-allulose, D-allose, D-sorbose and D-tagatose reduced SO generation (all p < 0.05). This could not be attributed to inhibition of cellular uptake of dextrose by the rare sugars tested. In a cell free system, all four rare sugars had significantly more SO, hydroxyl and peroxyl radical scavenging activity compared to dextrose (all p < 0.01). Treatment of cells with rare sugars reduced ER stress. However, unlike other three rare sugars, D-sorbose did not inhibit tunicamycin-induced eIF2α phosphorylation. Naturally occurring rare sugars are free radical scavengers and can reduce ER stress.

References

  • 1 Chambers, J.E. and Marciniak, S.J. (2014) Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 2. Protein misfolding and ER stress. Am J Physiol Cell Physiol. 307, C657–C70. First citation in articleCrossref MedlineGoogle Scholar

  • 2 Mooradian, A.D. (2016) Targeting select cellular stress pathways to prevent hyperglycemia-related complications: Shifting the paradigm. Drugs. 76, 1081–191. First citation in articleCrossref MedlineGoogle Scholar

  • 3 Palacio C, Mooradian A.D.. (2016) Clinical trials and antioxidant outcomes. In: Oxidative Stress and Antioxidant Protection: the Science of Free Radical Biology and Disease. Donald Armstrong and Robert D. Stratton (eds), Wiley, pp. 493–506. First citation in articleCrossrefGoogle Scholar

  • 4 Hansson G.K. (2005) Inflammation, atherosclerosis and coronary artery disease. N Engl J Med. 352, 1685–195. First citation in articleCrossref MedlineGoogle Scholar

  • 5 Sanson, M., Augé, N., Vindis, C., Muller, C., Bando, Y., Thiers, J.C., Marachet, M.A., Zarkovic, K., Sawa, Y., Salvayre, R. and Nègre-Salvayre, A. (2009) Oxidized low density lipoproteins trigger endoplasmic reticulum stress in vascular cells: prevention by oxygen-regulated protein expression. Circ Res. 104, 328–36. First citation in articleCrossref MedlineGoogle Scholar

  • 6 Myoishi, M., Hao, H., Minamino, T., Watanabe, K., Nishihira, K., Hatakeyama, K., Asada, Y., Okada, K., Ishibashi-Ueda, H., Gabbiani, G., Bochaton-Piallat, M.L., Mochizuki, N. and Kitakaze, M. (2007) Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome. Circulation. 116, 1226–133. First citation in articleCrossref MedlineGoogle Scholar

  • 7 Sheikh-Ali, M., Sultan, S., Alamir, A., Haas, M.J. and Mooradian, A.D. (2010) Hyperglycemia-induced endoplasmic reticulum stress in endothelial cells. Nutrition 26, 1146–1150. First citation in articleCrossref MedlineGoogle Scholar

  • 8 Sheikh-Ali, M., Sultan, S., Alamir, A., Haas, M.J.and Mooradian, A.D.(2010) Effects of antioxidants on glucose-induced oxidative stress and endoplasmic reticulum stress in endothelial cells. Diabetes Res Clin Prac. 87, 161–16. First citation in articleCrossref MedlineGoogle Scholar

  • 9 Mooradian, A.D.,Smith, M.and Tokuda, M.(2017) The role of artificial and natural sweeteners in reducing the consumption of table sugar: A Narrative review. Clinical Nutrition ESPEN. 18, 1–8. First citation in articleCrossref MedlineGoogle Scholar

  • 10 Izumori, K.(2002) Bioproduction strategy for rare hexose sugars. Naturwissenschaften 89, 120–124. First citation in articleCrossref MedlineGoogle Scholar

  • 11 Murata, A., Sekiya, K., Watanabe, Y., Yamaguchi, F., Hatano, N., Izumori, K.and Tokuda, M.A.(2003) Novel inhibitory effect of D-allose on production of reactive oxygen species from neutrophils. J Biosci Bioeng. 96, 89–9.. First citation in articleCrossref MedlineGoogle Scholar

  • 12 Nakamura, T., Tanaka, S., Hirooka, K., Toyoshima, T., Kawai, N., Tamiya, T., Shiraga, F., Tokuda, M., Keep, R.F.,Itano, T.and Miyamoto, O.(2011) Anti-oxidative effects of D-allose, a rare sugar, on ischemia-reperfusion damage following focal cerebral ischemia in rat. Neurosci Lett. 487, 103–16. First citation in articleCrossref MedlineGoogle Scholar

  • 13 Sui, L., Dong, Y., Watanabe, Y., Yamaguchi, F., Hatano, N., Tsukamoto, I., Izumori, K.and Tokuda, M.(2005) The inhibitory effect and possible mechanisms of D-allose on cancer cell proliferation. Int J Oncol. 27, 907–92. First citation in articleMedlineGoogle Scholar

  • 14 Yamaguchi, F., Takata, M., Kamitori, K., Nonaka, M., Dong, Y., Sui, L.and Tokuda, M.(2008) Rare sugar D-allose induces specific up-regulation of TXNIP and subsequent G1 cell cycle arrest in hepatocellular carcinoma cells by stabilization of p27kip1. Int J Oncol. 32, 377–35. First citation in articleMedlineGoogle Scholar

  • 15 Wehmeier, K.R, and Mooradian, A.D.(1994) Autooxidative and antioxidative potential of simple carbohydrate. Free Radical in Biol Med. 17, 83–8.. First citation in articleCrossref MedlineGoogle Scholar

  • 16 Hiramatsu, N., Kasai, A., Hayakawa, K., Yao, J.and Kitamura, M.(2006) Real-time detection and continuous monitoring of ER stress in vitro and in vivo by ES-TRAP: evidence for systemic, transient ER stress during endotoxemia. Nucl Acids Res. 34, e93. First citation in articleCrossref MedlineGoogle Scholar

  • 17 Goeke, N.M.,Olson, B.J.and Klenk, D.C.(1985) Measurement of protein using bicinchoninic acid. Anal Biochem. 150, 76–8.. First citation in articleCrossref MedlineGoogle Scholar

  • 18 Laemmli, U.K.(1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680–65. First citation in articleCrossref MedlineGoogle Scholar

  • 19 Towbin, H, Staehelin, T.and Gordon, J.(1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets. Proc Natl Acad Sci USA. 76:4350–4354. First citation in articleCrossref MedlineGoogle Scholar

  • 20 Buller, C.L.,Loberg, R.D.,Fan, M.H.,Zhu, Q., Park, J.L.,Vesely, E., Inoki, K., Guan, K.L.and Brosius, F.C.3rd. (2008) A GSK-3/TSC2/mTOR pathway regulates glucose uptake and GLUT1 glucose transporter expression. Am J Physiol Cell Physiol. 295, C836–C843. First citation in articleCrossref MedlineGoogle Scholar

  • 21 Mooradian, A.D.,Onstead-Haas, L. and Haas, M.J.(2016) Asymmetrical cross-talk between the endoplasmic reticulum stress and oxidative stress caused by dextrose. Life Sciences. 144, 37–4.. First citation in articleCrossref MedlineGoogle Scholar

  • 22 Sheikh-Ali, M., Chehade, J.M.and Mooradian, A.D.(2011) The antioxidant paradox in diabetes mellitus. Am J Ther. 18, 266–278. First citation in articleCrossref MedlineGoogle Scholar

  • 23 Mooradian, A.D.and Haas, M.J.(2011) Glucose-induced endoplasmic reticulum (ER) stress is independent of oxidative stress: A mechanistic explanation for the failure of antioxidant therapy in diabetes. Free Rad Biol & Med. 50, 1140–143. First citation in articleCrossref MedlineGoogle Scholar

  • 24 Iida, T., Hayashi, N., Yamada, T., Yoshikawa, Y., Miyazato, S., Kishimoto, Y., Okuma, K., Tokuda, M.and Izumori, K.(2010) Failure of d-psicose absorbed in the small intestine to metabolize into energy and its low large intestinal fermentability in humans. Metabolism Clinical and Experimental 59, 206–214. First citation in articleCrossref MedlineGoogle Scholar

  • 25 Whistler, R.L.,Singh, P.P.,Lake, W.C.(1974) D-Psicose metabolism in the rat. Carbohydr Res. 34, 200–22. First citation in articleCrossref MedlineGoogle Scholar

  • 26 Matsuo, T., Tanaka, T., Hashiguchi, M., Izumori, K., Suzuki, H.(2003) Metabolic effects of D-psicose in rats: studies on faecal and urinary excretion and caecal fermentation. Asia Pac J Clin Nutr. 12, 225–21. First citation in articleMedlineGoogle Scholar

  • 27 Murao, K., Yu, X., Cao, W.M.,Imachi, H., Chen, K., Muraoka, T., Kitanaka, N., Li, J., Ahmed, R.A.M., Matsumoto, K., Nishiuchi, T., Tokuda, M.and Ishida, T.(2007) D-Psicose inhibits the expression of MCP-1 induced by high-glucose stimulation in HUVECs. Life Sciences 81, 592–599. First citation in articleCrossref MedlineGoogle Scholar

  • 28 Ijaz, T., Sun, H., Pinchuk, I.V.,Milewicz, D.M.,Tilton, R.G.and Brasier, A.R.(2017) Deletion of NF-κB/RelA in angiotensin II-sensitive mesenchymal cells blocks aortic vascular inflammation and abdominal aortic aneurism formation. Atrerioscler Thromb Vasc Biol. 37, 1881–190. First citation in articleCrossref MedlineGoogle Scholar

  • 29 Li, Y.Y.,Zhang, G.Y.,He, J.P.,Zhang, D.D.,Kong, X.X.,Yuan, H.M.and Chen, F.L.(2017) Ufm1 inhibits LPS-induced endothelial cells inflammatory responses through the NF-κB signaling pathway. Int J Mol Med. 39, 1119–126. First citation in articleCrossref MedlineGoogle Scholar

  • 30 Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., Yamamoto, M.and Nabeshima, Y.(1997) An Nrf-2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Comm. 236, 313–32. First citation in articleCrossref MedlineGoogle Scholar