Skip to main content
Original Communication

Lutein Complex Supplementation Increases Ocular Blood Flow Biomarkers in Healthy Subjects

Published Online:https://doi.org/10.1024/0300-9831/a000576

Abstract.Introduction: To investigate the effects of a lutein complex supplementation on ocular blood flow in healthy subjects. Materials and Methods: Sixteen healthy female patients (mean age 36.8 ± 12.1 years) were enrolled in this randomized, placebo-controlled, double-blinded, two-period crossover study. Subjects received daily an oral dose of the lutein with synergistic phytochemicals complex (lutein (10 mg), ascorbic acid (500 mg), tocopherols (364 mg), carnosic acid (2.5 mg), zeaxanthin (2 mg), copper (2 mg), with synergistic effects in reducing pro-inflammatory mediators and cytokines when administered together in combination) and placebo during administration periods. Measurements were taken before and after three-week supplementation periods, with crossover visits separated by a three-week washout period. Data analysis included blood pressure, heart rate, intraocular pressure, visual acuity, contrast sensitivity detection, ocular perfusion pressure, confocal scanning laser Doppler imaging of retinal capillary blood flow, and Doppler imaging of the retrobulbar blood vessels. Results: Lutein complex supplementation produced a statistically significant increase in mean superior retinal capillary blood flow, measured in arbitrary units (60, p = 0.0466) and a decrease in the percentage of avascular area in the superior (−0.029, p = 0.0491) and inferior (−0.023, p = 0.0477) retina, as well as reduced systolic (−4.06, p = 0.0295) and diastolic (−3.69, p = 0.0441) blood pressure measured in mmHg from baseline. Data comparison between the two supplement groups revealed a significant decrease in systemic diastolic blood pressure (change from pre- to post-treatment with lutein supplement (mean (SE)): −3.69 (1.68); change from pre- to post-treatment with placebo: 0.31 (2.57); p = 0.0357) and a significant increase in the peak systolic velocity (measured in cm/sec) in the central retinal artery (change from pre- to post-treatment with lutein supplement: 0.36 (0.19); change from pre- to post-treatment with placebo: −0.33 (0.21); p = 0.0384) with lutein complex supplement; data analyses from the placebo group were all non-significant. Discussion: In healthy participants, oral administration of a lutein phytochemicals complex for three weeks produced increased ocular blood flow biomarkers within retinal vascular beds and reduced diastolic blood pressure compared to placebo.

References

  • 1 National Eye Institute, National Institutes of Health. (2013, May) Age-Related Eye Disease Study-Results. nei.nih.gov/amd. Accessed July 25, 2016 First citation in articleGoogle Scholar

  • 2 Thompson, J., & Lakhani, N. (2015) Cataracts. Prim Care. 42(3), 409–423. First citation in articleCrossref MedlineGoogle Scholar

  • 3 National Eye Institute, National Institutes of Health. Glaucoma, Open-angle. nei.nih.gov/eyedata/glaucoma. Accessed July 25, 2016 First citation in articleGoogle Scholar

  • 4 Costa, V.P., Harris, A., Anderson, D., Stodtmeister, R., Cremasco, F., Kergoat, H., Lovasik, J., Stalmans, I., Zeitz, O., Lanzl, I., Gugleta, K., & Schmetterer, L. (2014) Ocular perfusion pressure in glaucoma. Acta Ophthalmol. 92(4), e252–266. First citation in articleCrossref MedlineGoogle Scholar

  • 5 Wong, W.L., Su, X., Li, X., Cheung, C.M., Klein, R., Cheng, C.Y., & Wong, T.Y. (2014) Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta analysis. Lancet Glob Health. 2(2), e106–116. First citation in articleCrossref MedlineGoogle Scholar

  • 6 Mehta, S. (2015) Age-Related Macular Degeneration. Prim Care Clin Office Pract. 42, 377–391. First citation in articleCrossref MedlineGoogle Scholar

  • 7 Ciulla, T.A., Harris, A., & Martin, B.J. (2001) Ocular perfusion and age-related macular degeneration. Acta Ophthalmol Scand. 79(2), 108–115. First citation in articleCrossref MedlineGoogle Scholar

  • 8 McCall, D.O., McGartland, C.P., McKinley, C.P., Patterson, C.C., Sharpe, P., McCance, D.R., Young, I.S., & Woodside, J.V. (2009) Dietary intake of fruits and vegetables improves microvascular function in hypertensive subjects in a dose-dependent manner. Circulation. 119(16), 2153–2160. First citation in articleCrossref MedlineGoogle Scholar

  • 9 Age-Related Eye Disease Study Research Group. (2001) A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol. 119(10), 1417–1436. First citation in articleCrossref MedlineGoogle Scholar

  • 10 Scholl, H.P.N., Issa, P.C., Walier, M., Janzer, S., Pollok-Kopp, B., Börncke, F., Fritsche, L.G., Chong, N.V., Fimmers, R., Wienker, T., Holz, F.G., Weber, B.H.F., & Oppermann, M. (2008) Systemic complement activation in age-related macular degeneration. Plos One. 3(7), e2593. First citation in articleCrossref MedlineGoogle Scholar

  • 11 Smailhodzic, D., Klaver, C.C., Klevering, B.J., Boon, C.J., Groenewoud, J.M., Kirchhof, B., Daha, M.R., den Hollander, A.I., & Hoyng, C.B. (2012) Risk alleles in CFH and ARMS2 are independently associated with systemic complement activation in age-related macular degeneration. Ophthalmology. 119, 339–346. First citation in articleCrossref MedlineGoogle Scholar

  • 12 Armoza, A., Haim, Y., Basiri, A., Wolak, T., & Paran, E. (2013) Tomato extract and the carotenoids lycopene and lutein improve endothelial function and attenuate inflammatory NF-κβ signaling in endothelial cells. J Hypertens. 31, 1277. First citation in articleCrossrefGoogle Scholar

  • 13 Clauss, M., Sunderkotter, C., Sveinbjornsson, B., Hippenstiel, S., Willuweit, A., Marino, M., Haas, E., Seljelid, R., Scheurich, P., Suttorp, N., Grell, M., & Risau, W. (2001) A permissive role for tumor necrosis factor in vascular endothelial growth factor-induced vascular permeability. Blood. 97, 1321–1329. First citation in articleCrossref MedlineGoogle Scholar

  • 14 Kim, Y., Seo, J., & Kim, H. (2010) Beta-carotene and lutein inhibit hydrogen peroxide-induced activation of NF-κβ and IL-8 expression in gastric epithelial AGS cells. J Nutr Sci Vitaminol. 57, 216–223. First citation in articleCrossrefGoogle Scholar

  • 15 Seddon, J., & Hennekens, C. (1994) Vitamins, minerals, and macular degeneration: Promising but unproven hypotheses. Arch Ophthalmol. 112, 176–178. First citation in articleCrossref MedlineGoogle Scholar

  • 16 Krinsky, N.I. (2002) Possible biologic mechanisms for a protective role of xanthophylls. J Nutr. 132, 540S–542S. First citation in articleCrossref MedlineGoogle Scholar

  • 17 Hadad, N., & Levy, R. (2012) The synergistic anti-inflammatory effects of lycopene, lutein, β-carotene, and carnosic acid combinations via redox-based inhibition of NF-κβ signaling. Free Radic Biol Med. 53, 1381–1391. First citation in articleCrossref MedlineGoogle Scholar

  • 18 Feng, D., Ling, W., & Duan, R. (2009) Lycopene suppresses LPS-induced NO and IL-6 production by inhibiting the activation of ERK, p28MAPK, and NFκβ in macrophages. Inflamm Res. 59, 115–121. First citation in articleCrossref MedlineGoogle Scholar

  • 19 Izumi-Nagai, K., Nagai, N., Ohgami, K., Satofuka, S., Ozawa, Y., Tsubota, K., Umezawa, K., Ohno, S., Oike, Yuichi, & Ishida, S. (2007) Macular pigment lutein is anti-inflammatory in preventing choroidal neovascularization. Arterioscler Thromb Vasc Biol. 27, 2555–2562. First citation in articleCrossref MedlineGoogle Scholar

  • 20 Machalińska, A., Mozolewska-Piotrowska, K., Paczkowska, E., & Lubiniski, W. (2014) Increased expression of endothelin-1—a novel diagnostic marker for early AMD detection? Klin Oczna. 116, 16–20. First citation in articleMedlineGoogle Scholar

  • 21 Bernstein, P.S., Zhao, D.Y., Wintch, S.W., Ermakov, I.V., McClane, R.W., & Gellermann, W. (2002) Resonance Raman measurement of macular carotenoids in normal subjects and in age-related macular degeneration patients. Ophthalmology. 109, 1780–1787. First citation in articleCrossref MedlineGoogle Scholar

  • 22 Richer, S., Stiles, W., Statkute, L., Pulido, J., Frankowski, J., Rudy, D., Pei, K., Tsipursky, M., & Nyland, J. (2004) Double-masked, placebo-controlled, randomized trial of lutein and antioxidant supplementation in the intervention of atrophic age-related macular degeneration: the Veterans LAST study (Lutein Antioxidant Supplementation Trial). Optometry. 75(4), 216–230. First citation in articleCrossref MedlineGoogle Scholar

  • 23 Rinsky, B., Hagbi-Levi, S., Elbaz-Hayoun, S., Grunin, M., & Chowers, I. (2017) Characterizing the effect of supplements on the phenotype of cultured macrophages from patients with age-related macular degeneration. Mol Vis. 23, 889–899. First citation in articleMedlineGoogle Scholar

  • 24 Metelitsina, T.I., Grunwald, J.E., DuPont, J.C., Ying, G.S., Brucker, A.J., & Dunaief, J.L. (2008) Foveolar choroidal circulation and choroidal neovascularization in age-related macular degeneration. Invest Ophthalmol Vis Sci. 49(1), 358–363. First citation in articleCrossref MedlineGoogle Scholar

  • 25 Tobe, L.A., Harris, A., Hussain, R.M., Eckert, G., Huck, A., Park, J., Egan, P., Kim, N.J., & Siesky, B. (2015) The role of retrobulbar and retinal circulation on optic nerve head and retinal nerve fiber layer structure in patients with open-angle glaucoma over an 18-month period. Br J Ophthalmol. 99(5), 609–612. First citation in articleCrossref MedlineGoogle Scholar

  • 26 Galassi, F., Sodi, A., Ucci, F., Renieri, G., Pieri, B., & Baccini, M. (2003) Ocular hemodynamics and glaucoma prognosis: a color Doppler imaging study. Arch Ophthalmol. 121(12), 1711–1715. First citation in articleCrossref MedlineGoogle Scholar

  • 27 Martinez, A., & Sanchez, M. (2005) Predictive value of color Doppler imaging in a prospective study of visual field progression in primary open-angle glaucoma. Acta Ophthalmol Scand. 83(6), 716–722. First citation in articleCrossref MedlineGoogle Scholar

  • 28 Moore, N.A., Harris, A., Wentz, S., Verticchio Vercellin, A.C., Parekh, P., Gross, J., Hussain, R.M., Thieme, C., & Siesky, B. (2017) Baseline retrobulbar blood flow is associated with both functional and structural glaucomatous progression after 4 years. Br J Ophthalmol. 101(3), 305–308. First citation in articleMedlineGoogle Scholar

  • 29 Choi, J., & Kook, M.S. (2015) Systemic and Ocular Hemodynamic Risk Factors in Glaucoma. Biomed Res Int. 141905. First citation in articleMedlineGoogle Scholar

  • 30 Stefánsson, E., Geirsdóttir, Á., & Sigurdsson, H. (2011) Metabolic physiology in age related macular degeneration. Prog Retin Eye Res. 30(1), 72–80. First citation in articleCrossref MedlineGoogle Scholar

  • 31 Bohn, T. (2017) Bioactivity of Carotenoids - Chasms of Knowledge. Int J Vitam Nutr Res. 1–5. 2017 Feb 10 First citation in articleLinkGoogle Scholar

  • 32 Gust, J.L., & Logomarsino, J.V. (2016) The Association Between Cartenoid Status and Body Composition in Children 2–18 Years of Age - A Systematic Review. Int J Vitam Nutr Res. 86(3–4), 91–120. First citation in articleLinkGoogle Scholar