Skip to main content
Original Communication

Coenzyme Q10 administration has no effect on sICAM-1 and metabolic parameters of pediatrics with type 1 diabetes mellitus

Published Online:https://doi.org/10.1024/0300-9831/a000636

Abstract.Background: Endothelial dysfunction (ED) plays a key role in the development and progression of microvascular and macrovascular complications in pediatrics with type 1 diabetes mellitus (T1DM). Coenzyme Q10 (CoQ10) is a nutraceutical with a known anti-inflammatory and anti-oxidant activity. This study was conducted to evaluate the potential effect of CoQ10 on ED and various metabolic parameters. Methods: This prospective randomized open-label pilot study was conducted on 49 T1DM pediatric patients. Seven healthy non-diabetic pediatric subjects who didn’t receive treatment were included as a control group. Eligible patients were randomly allocated into either group I (n = 25); received 100 mg of CoQ10 in addition to standard treatment or group II (n = 24); received standard treatment only. The levels of; soluble intracellular adhesion molecule-1 (sICAM-1), glycated hemoglobin (HbA1c), fasting blood glucose (FBG), lipid profile, serum creatinine and liver function tests were assessed for both groups at baseline and after 3 months of treatment. Results: At baseline, compared to an age-matched healthy control group sICAM-1 levels were significantly elevated in group II diabetic patients (276.5 (231.6–320.66) vs 221.8 (177.9–267.1 ng/ml), p = 0.042. After 3 months of treatment no significant difference was observed in sICAM-1, HbA1c, FBG, lipid profile, serum creatinine and liver function tests between the two study groups. A positive correlation was found between sICAM-1 and HbA1c throughout the study (r = 0.308, p = 0.0054). Conclusion: Administration of CoQ10 for 3 months in T1DM pediatric patients was well tolerated but had no favorable effect on ED or metabolic parameters.

References

  • 1 Gvazava IG, Rogovaya OS, Borisov MA, Vorotelyak EA, Vasiliev AV. Pathogenesis of type 1 diabetes mellitus and rodent experimental models. Acta Naturae. 2018;10(1):24–33. First citation in articleCrossref MedlineGoogle Scholar

  • 2 Soltesz G. Worldwide childhood type 1 diabetes epidemiology. Endocrinol Nutr. 2009;56(Suppl 4):53–5. First citation in articleCrossref MedlineGoogle Scholar

  • 3 James S, Gallagher R, Dunbabin J, Perry L. Prevalence of vascular complications and factors predictive of their development in young adults with type 1 diabetes: Systematic literature review. BMC Res Notes. 2014;7:593. First citation in articleCrossref MedlineGoogle Scholar

  • 4 Polat SB, Ugurlu N, Aslan N, Cuhaci N, Ersoy R, Cakir B. Evaluation of biochemical and clinical markers of endothelial dysfunction and their correlation with urinary albumin excretion in patients with type 1 diabetes mellitus. Arch Endocrinol Metab. 2016;60(2):117–24. First citation in articleCrossref MedlineGoogle Scholar

  • 5 Gao L, Mao Q, Cao J, Wang Y, Zhou X, Fan L. Effects of coenzyme q10 on vascular endothelial function in humans: A meta-analysis of randomized controlled trials. Atherosclerosis. 2012;221(2):311–6. First citation in articleCrossref MedlineGoogle Scholar

  • 6 Watts GF, Playford DA, Croft KD, Ward NC, Mori TA, Burke V. Coenzyme q(10) improves endothelial dysfunction of the brachial artery in type ii diabetes mellitus. Diabetologia. 2002;45(3):420–6. First citation in articleCrossref MedlineGoogle Scholar

  • 7 Scaramuzza AE, Redaelli F, Giani E, Macedoni M, Giudici V, Gazzarri A, et al. Adolescents and young adults with type 1 diabetes display a high prevalence of endothelial dysfunction. Acta Paediatr. 2015;104(2):192–7. First citation in articleCrossref MedlineGoogle Scholar

  • 8 Sibal L, Agarwal SC, Schwedhelm E, Luneburg N, Boger RH, Home PD. A study of endothelial function and circulating asymmetric dimethylarginine levels in people with type 1 diabetes without macrovascular disease or microalbuminuria. Cardiovasc Diabetol. 2009;8:27. First citation in articleCrossref MedlineGoogle Scholar

  • 9 Hocaoglu-Emre FS, Saribal D, Yenmis G, Guvenen G. Vascular cell adhesion molecule 1, intercellular adhesion molecule 1, and cluster of differentiation 146 levels in patients with type 2 diabetes with complications. Endocrinol Metab (Seoul). 2017;32(1):99–105. First citation in articleCrossref MedlineGoogle Scholar

  • 10 Glowinska B, Urban M, Peczynska J, Florys B. Soluble adhesion molecules (sicam-1, svcam-1) and selectins (se selectin, sp selectin, sl selectin) levels in children and adolescents with obesity, hypertension, and diabetes. Metabolism. 2005;54(8):1020–6. First citation in articleCrossref MedlineGoogle Scholar

  • 11 Nowak M, Wielkoszynski T, Marek B, Kos-Kudla B, Swietochowska E, Sieminska L, et al. Blood serum levels of vascular cell adhesion molecule (svcam-1), intercellular adhesion molecule (sicam-1) and endothelial leucocyte adhesion molecule-1 (elam-1) in diabetic retinopathy. Clin Exp Med. 2008;8(3):159–64. First citation in articleCrossref MedlineGoogle Scholar

  • 12 Targher G, Bertolini L, Zoppini G, Zenari L, Falezza G. Increased plasma markers of inflammation and endothelial dysfunction and their association with microvascular complications in type 1 diabetic patients without clinically manifest macroangiopathy. Diabet Med. 2005;22(8):999–1004. First citation in articleCrossref MedlineGoogle Scholar

  • 13 Clausen P, Jacobsen P, Rossing K, Jensen JS, Parving HH, Feldt-Rasmussen B. Plasma concentrations of vcam-1 and icam-1 are elevated in patients with type 1 diabetes mellitus with microalbuminuria and overt nephropathy. Diabet Med. 2000;17(9):644–9. First citation in articleCrossref MedlineGoogle Scholar

  • 14 Costacou T, Lopes-Virella MF, Zgibor JC, Virella G, Otvos J, Walsh M, et al. Markers of endothelial dysfunction in the prediction of coronary artery disease in type 1 diabetes. The pittsburgh epidemiology of diabetes complications study. J Diabetes Complications. 2005;19(4):183–93. First citation in articleCrossref MedlineGoogle Scholar

  • 15 Villalba JM, Parrado C, Santos-Gonzalez M, Alcain FJ. Therapeutic use of coenzyme q10 and coenzyme q10-related compounds and formulations. Expert Opin Investig Drugs. 2010;19(4):535–54. First citation in articleCrossref MedlineGoogle Scholar

  • 16 Pravst I, Zmitek K, Zmitek J. Coenzyme q10 contents in foods and fortification strategies. Crit Rev Food Sci Nutr. 2010;50(4):269–80. First citation in articleCrossref MedlineGoogle Scholar

  • 17 Garrido-Maraver J, Cordero MD, Oropesa-Ávila M, Fernández Vega A, de la Mata M, Delgado Pavón A, et al. Coenzyme q(10) therapy. Mol Syndromol. 2014;5(3–4):187–97. First citation in articleCrossref MedlineGoogle Scholar

  • 18 Yang YK, Wang LP, Chen L, Yao XP, Yang KQ, Gao LG, et al. Coenzyme q10 treatment of cardiovascular disorders of ageing including heart failure, hypertension and endothelial dysfunction. Clin Chim Acta. 2015;450:83–9. First citation in articleCrossref MedlineGoogle Scholar

  • 19 Lim SC, Tan HH, Goh SK, Subramaniam T, Sum CF, Tan IK, et al. Oxidative burden in prediabetic and diabetic individuals: Evidence from plasma coenzyme q(10). Diabet Med. 2006;23(12):1344–9. First citation in articleCrossref MedlineGoogle Scholar

  • 20 Lim SC, Lekshminarayanan R, Goh SK, Ong YY, Subramaniam T, Sum CF, et al. The effect of coenzyme q10 on microcirculatory endothelial function of subjects with type 2 diabetes mellitus. Atherosclerosis. 2008;196(2):966–9. First citation in articleCrossref MedlineGoogle Scholar

  • 21 Mohseni M, Vafa M, Zarrati M, Shidfar F, Hajimiresmail SJ, Rahimi Forushani A. Beneficial effects of coenzyme q10 supplementation on lipid profile and intereukin-6 and intercellular adhesion molecule-1 reduction, preliminary results of a double-blind trial in acute myocardial infarction. Int J Prev Med. 2015;6:73. First citation in articleCrossref MedlineGoogle Scholar

  • 22 Karve S, Cleves MA, Helm M, Hudson TJ, West DS, Martin BC. Good and poor adherence: Optimal cut-point for adherence measures using administrative claims data. Curr Med Res Opin. 2009;25(9):2303–10. First citation in articleCrossref MedlineGoogle Scholar

  • 23 Papanas N, Tziakas D, Chalikias G, Floros D, Trypsianis G, Papadopoulou E, et al. Gliclazide treatment lowers serum icam-1 levels in poorly controlled type 2 diabetic patients. Diabetes Metab. 2006;32(4):344–9. First citation in articleCrossref MedlineGoogle Scholar

  • 24 Miyamae T, Seki M, Naga T, Uchino S, Asazuma H, Yoshida T, et al. Increased oxidative stress and coenzyme q10 deficiency in juvenile fibromyalgia: Amelioration of hypercholesterolemia and fatigue by ubiquinol-10 supplementation. Redox Rep. 2013;18(1):12–9. First citation in articleCrossref MedlineGoogle Scholar

  • 25 Kalpravidh RW, Wichit A, Siritanaratkul N, Fucharoen S. Effect of coenzyme q10 as an antioxidant in beta-thalassemia/hb e patients. Biofactors. 2005;25(1–4):225–34. First citation in articleCrossref MedlineGoogle Scholar

  • 26 Satoh N, Shimatsu A, Yamada K, Aizawa-Abe M, Suganami T, Kuzuya H, et al. An alpha-glucosidase inhibitor, voglibose, reduces oxidative stress markers and soluble intercellular adhesion molecule 1 in obese type 2 diabetic patients. Metabolism – Clinical and Experimental. 2006;55(6):786–93. First citation in articleCrossref MedlineGoogle Scholar

  • 27 Esteghamati A, Azizi R, Ebadi M, Noshad S, Mousavizadeh M, Afarideh M, et al. The comparative effect of pioglitazone and metformin on serum osteoprotegerin, adiponectin and intercellular adhesion molecule concentrations in patients with newly diagnosed type 2 diabetes: A randomized clinical trial. Exp Clin Endocrinol Diabetes. 2015;123(05):289–95. First citation in articleCrossref MedlineGoogle Scholar

  • 28 Moens AL, Goovaerts I, Claeys MJ, Vrints CJ. Flow-mediated vasodilation: A diagnostic instrument, or an experimental tool? Chest. 2005;127(6):2254–63. First citation in articleCrossref MedlineGoogle Scholar

  • 29 Glowinska-Olszewska B, Tolwinska J, Urban M. Relationship between endothelial dysfunction, carotid artery intima media thickness and circulating markers of vascular inflammation in obese hypertensive children and adolescents. J Pediatr Endocrinol Metab. 2007;20(10):1125–36. First citation in articleCrossref MedlineGoogle Scholar

  • 30 Hamilton SJ, Chew GT, Watts GF. Coenzyme q10 improves endothelial dysfunction in statin-treated type 2 diabetic patients. Diabetes Care. 2009;32(5):810–2. First citation in articleCrossref MedlineGoogle Scholar

  • 31 Henriksen JE, Andersen CB, Hother-Nielsen O, Vaag A, Mortensen SA, Beck-Nielsen H. Impact of ubiquinone (coenzyme q10) treatment on glycaemic control, insulin requirement and well-being in patients with type 1 diabetes mellitus. Diabet Med. 1999;16(4):312–8. First citation in articleCrossref MedlineGoogle Scholar

  • 32 Zahedi H, Eghtesadi S, Seifirad S, Rezaee N, Shidfar F, Heydari I, et al. Effects of coq10 supplementation on lipid profiles and glycemic control in patients with type 2 diabetes: A randomized, double blind, placebo-controlled trial. J Diabetes Metab Disord. 2014;13:81. First citation in articleCrossref MedlineGoogle Scholar

  • 33 Raygan F, Rezavandi Z, Dadkhah Tehrani S, Farrokhian A, Asemi Z. The effects of coenzyme q10 administration on glucose homeostasis parameters, lipid profiles, biomarkers of inflammation and oxidative stress in patients with metabolic syndrome. Eur J Nutr. 2016;55(8):2357–64. First citation in articleCrossref MedlineGoogle Scholar

  • 34 Samimi M, Zarezade Mehrizi M, Foroozanfard F, Akbari H, Jamilian M, Ahmadi S, et al. The effects of coenzyme q10 supplementation on glucose metabolism and lipid profiles in women with polycystic ovary syndrome: A randomized, double-blind, placebo-controlled trial. Clin Endocrinol (Oxf). 2017;86(4):560–6. First citation in articleCrossref MedlineGoogle Scholar

  • 35 Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, et al. Mitochondrial dysfunction in the elderly: Possible role in insulin resistance. Science. 2003;300(5622):1140–2. First citation in articleCrossref MedlineGoogle Scholar

  • 36 Kaikkonen J, Nyyssonen K, Tuomainen TP, Ristonmaa U, Salonen JT. Determinants of plasma coenzyme q10 in humans. FEBS Lett. 1999;443(2):163–6. First citation in articleCrossref MedlineGoogle Scholar

  • 37 Alkholy UM, Abdalmonem N, Zaki A, Elkoumi MA, Hashim MIA, Basset MAA, et al. The antioxidant status of coenzyme q10 and vitamin e in children with type 1 diabetes. J Pediatr (Rio J). 2018. First citation in articleGoogle Scholar

  • 38 Zhang P, Yang C, Guo H, Wang J, Lin S, Li H, et al. Treatment of coenzyme q10 for 24 weeks improves lipid and glycemic profile in dyslipidemic individuals. J Clin Lipidol. 2018;12(2):417–27 e5. First citation in articleCrossref MedlineGoogle Scholar

  • 39 Fathollahi A, Massoud A, Amirzargar AA, Aghili B, Nasli Esfahani E, Rezaei N. Sicam-1, svcam-1 and se-selectin levels in type 1 diabetes. Fetal Pediatr Pathol. 2018;37(1):69–73. First citation in articleCrossref MedlineGoogle Scholar

  • 40 Seckin D, Ilhan N, Ilhan N, Ertugrul S. Glycaemic control, markers of endothelial cell activation and oxidative stress in children with type 1 diabetes mellitus. Diabetes Res Clin Pract. 2006;73(2):191–7. First citation in articleCrossref MedlineGoogle Scholar

  • 41 Ikematsu H, Nakamura K, Harashima S, Fujii K, Fukutomi N. Safety assessment of coenzyme q10 (kaneka q10) in healthy subjects: A double-blind, randomized, placebo-controlled trial. Regul Toxicol Pharmacol. 2006;44(3):212–8. First citation in articleCrossref MedlineGoogle Scholar

  • 42 Hidaka T, Fujii K, Funahashi I, Fukutomi N, Hosoe K. Safety assessment of coenzyme q10 (coq10). Biofactors. 2008;32(1–4):199–208. First citation in articleCrossref MedlineGoogle Scholar