Skip to main content
Review

Effects of chromium supplementation on oxidative stress biomarkers

A systematic review and meta-analysis of randomized clinical trials

Published Online:https://doi.org/10.1024/0300-9831/a000706

Abstract:Aim: This systematic review and meta-analysis aimed to evaluate the effects of chromium supplementation on oxidative stress biomarkers such as superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GPX), malondialdehyde (MDA), total antioxidant status (TAS), thiobarbituric acid reactive substances (TBARS), catalase (CAT), nitric oxide (NO), total antioxidant capacity (TAC) and protein carbonyl. Methods: Relevant studies, published from inception until July 2019, were searched through PubMed/Medline, Scopus, ISI Web of Science, Embase, and Google Scholar. All randomized clinical trials investigating the effect of chromium supplementation on oxidative stress were included. Results: Out of 252 citations, 10 trials that enrolled 595 subjects were included. Chromium supplementation resulted in a significant increase in GSH (WMD: 64.79 mg/dl, 95% CI: 22.43 to 107.15; P=0.003) but no significant change in MDA, TAS, TBARS levels, SOD, CAT levels and GPX. Chromium picolinate supplementation resulted in a significant increase in TAC while failing to have a significant effect on NO. Moreover, both chromium picolinate and chromium dinicocysteinate supplementation reduced protein carbonyl levels. Conclusion: Overall, this meta-analysis demonstrated that chromium supplementation increased GSH without any significant changes in the mean of GPX, MDA, TAS, TBARS, CAT and SOD.

References

  • 1 Singh P, Chowdhuri DK. Modulation of sestrin confers protection to Cr(VI) induced neuronal cell death in Drosophila melanogaster. Chemosphere. 2018;191:302–14. First citation in articleCrossref MedlineGoogle Scholar

  • 2 Luo L, Xie Y, Wang A, Liu X, Xiao F, Zhong X, et al. Desipramine Ameliorates Cr(VI)-Induced Hepatocellular Apoptosis via the Inhibition of Ceramide Channel Formation and Mitochondrial PTP Opening. Cell Physiol Biochem. 2014;34:2128–36. First citation in articleCrossref MedlineGoogle Scholar

  • 3 Reynolds M, Zhitkovich A. Cellular vitamin C increases chromate toxicity via a death program requiring mismatch repair but not p53. Carcinogenesis. 2007;28(7):1613–20. First citation in articleCrossref MedlineGoogle Scholar

  • 4 Xueting L, Rehman MU, Mehmood K, Huang S, Tian X, Wu X, et al. Ameliorative effects of nano-elemental selenium against hexavalent chromium-induced apoptosis in broiler liver. Environ Sci Pollut Res. 2018;25(16):15609–15. First citation in articleCrossref MedlineGoogle Scholar

  • 5 Cefalu WT, Hu FB. Role of chromium in human health and in diabetes. Diabetes Care. 2004;27(11):2741–51. First citation in articleCrossref MedlineGoogle Scholar

  • 6 Vincent JB. Chromium: celebrating 50 years as an essential element? Dalton Trans. 2010;39(16):3787–94. First citation in articleCrossref MedlineGoogle Scholar

  • 7 Zayed AM, Terry N Chromium in the environment: factors affecting biological remediation. Plant Soil. 2003;249(1):139–56. First citation in articleCrossrefGoogle Scholar

  • 8 Mahdi GS. Barley as high-chromium food. J Am Diet Assoc. 1995;95(7):749. First citation in articleCrossref MedlineGoogle Scholar

  • 9 Trumbo P, Yates AA, Schlicker S, Poos M. Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J Am Diet Assoc. 2001;101(3):294–301. First citation in articleCrossref MedlineGoogle Scholar

  • 10 MiningWatch C. Potential toxic effects of chromium, chromite mining and ferrochrome production: a literature review. 2013. First citation in articleGoogle Scholar

  • 11 Tangvarasittichai O, Tangvarasittichai S. Oxidative stress, ocular disease and diabetes retinopathy. Curr Pharm Des. 2018;24(40):4726–41. First citation in articleCrossref MedlineGoogle Scholar

  • 12 Umeno A, Biju V, Yoshida Y. In vivo ROS production and use of oxidative stress-derived biomarkers to detect the onset of diseases such as Alzheimer’s disease, Parkinson’s disease, and diabetes. Free Radic Res. 2017;51(4):413–27. First citation in articleCrossref MedlineGoogle Scholar

  • 13 Yang F, Pei R, Zhang Z, Liao J, Yu W, Qiao N, et al. Copper induces oxidative stress and apoptosis through mitochondria-mediated pathway in chicken hepatocytes. Toxicol In Vitro. 2019;54:310–6. First citation in articleCrossref MedlineGoogle Scholar

  • 14 Zhang Y, Xiao F, Liu X, Liu K, Zhou X, Zhong C. Cr(VI) induces cytotoxicity in vitro through activation of ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction via the PI3K/Akt signaling pathway. Toxicol In Vitro. 2017;41:232–44. First citation in articleCrossref MedlineGoogle Scholar

  • 15 Jain SK, Kannan K. Chromium chloride inhibits oxidative stress and TNF-α secretion caused by exposure to high glucose in cultured U937 monocytes. Biochem Biophys Res Commun. 2001;289(3):687–91. First citation in articleCrossref MedlineGoogle Scholar

  • 16 Jain SK, Patel P, Rogier K, Jain SK. Trivalent chromium inhibits protein glycosylation and lipid peroxidation in high glucose-treated erythrocytes. Antioxid Redox Signal. 2006;8(1–2):238–41. First citation in articleCrossref MedlineGoogle Scholar

  • 17 Wallach S. Clinical and biochemical aspects of chromium deficiency. J Am Coll Nutr. 1985;4(1):107–20. First citation in articleCrossref MedlineGoogle Scholar

  • 18 Jain SK, Rains JL, Croad JL. Effect of chromium niacinate and chromium picolinate supplementation on lipid peroxidation, TNF-alpha, IL-6, CRP, glycated hemoglobin, triglycerides, and cholesterol levels in blood of streptozotocin-treated diabetic rats. Free Radic Biol Med. 2007;43(8):1124–31. First citation in articleCrossref MedlineGoogle Scholar

  • 19 Tian YY, Zhang LY, Dong B, Cao J, Xue JX, Gong LM. Effects of chromium methionine supplementation on growth performance, serum metabolites, endocrine parameters, antioxidant status, and immune traits in growing pigs. Biol Trace Elem Res. 2014;162(1–3):134–41. First citation in articleCrossref MedlineGoogle Scholar

  • 20 Anderson RA, Roussel AM, Zouari N, Mahjoub S, Matheau JM, Kerkeni A. Potential antioxidant effects of zinc and chromium supplementation in people with type 2 diabetes mellitus. J Am Coll Nutr. 2001;20(3):212–8. First citation in articleCrossref MedlineGoogle Scholar

  • 21 Cheng HH, Lai MH, Hou WC, Huang CL. Antioxidant effects of chromium supplementation with type 2 diabetes mellitus and euglycemic subjects. J Agric Food Chem. 2004;52(5):1385–9. First citation in articleCrossref MedlineGoogle Scholar

  • 22 Farrokhian A, Mahmoodian M, Bahmani F, Amirani E, Shafabakhsh R, Asemi Z. The influences of chromium supplementation on metabolic status in patients with type 2 diabetes mellitus and coronary heart disease. Biol Trace Elem Res. 2020;194(2):313–20. First citation in articleCrossref MedlineGoogle Scholar

  • 23 Jain SK, Kahlon G, Morehead L, Dhawan R, Lieblong B, Stapleton T, et al. Effect of chromium dinicocysteinate supplementation on circulating levels of insulin, TNF-alpha, oxidative stress, and insulin resistance in type 2 diabetic subjects: randomized, double-blind, placebo-controlled study. Mol Nutr Food Res. 2012;56(8):1333–41. First citation in articleCrossref MedlineGoogle Scholar

  • 24 Jamilian M, Zadeh Modarres S, Amiri Siavashani M, Karimi M, Mafi A, Ostadmohammadi V, et al. The influences of chromium supplementation on glycemic control, markers of cardio-metabolic risk, and oxidative stress in infertile polycystic ovary syndrome women candidate for in vitro fertilization: a randomized, double-blind, placebo-controlled trial. Biol Trace Elem Res. 2018;185(1):48–55. First citation in articleCrossref MedlineGoogle Scholar

  • 25 Lai M-H. Antioxidant effects and insulin resistance improvement of chromium combined with vitamin C and E supplementation for type 2 diabetes mellitus. J Clin Biochem Nutr. 2008;43(3):191–8. First citation in articleCrossref MedlineGoogle Scholar

  • 26 Racek J, Trefil L, Rajdl D, Mudrova V, Hunter D, Senft V. Influence of chromium-enriched yeast on blood glucose and insulin variables, blood lipids, and markers of oxidative stress in subjects with type 2 diabetes mellitus. Biol Trace Elem Res. 2006;109(3):215–30. First citation in articleCrossref MedlineGoogle Scholar

  • 27 Saiyed ZM, Lugo JP. Impact of chromium dinicocysteinate supplementation on inflammation, oxidative stress, and insulin resistance in type 2 diabetic subjects: an exploratory analysis of a randomized, double-blind, placebo-controlled study. Food Nutr Res. 2016;60:31762. First citation in articleCrossref MedlineGoogle Scholar

  • 28 Amiri Siavashani M, Zadeh Modarres S, Mirhosseini N, Aghadavod E, Salehpour S, Asemi Z. The effects of chromium supplementation on gene expression of insulin, lipid, and inflammatory markers in infertile women with polycystic ovary syndrome candidate for in vitro fertilization: a randomized, double-blinded, placebo-controlled trial. Front Endocrinol (Lausanne). 2018;9:726. First citation in articleCrossref MedlineGoogle Scholar

  • 29 Jamilian M, Bahmani F, Siavashani MA, Mazloomi M, Asemi Z, Esmaillzadeh A. The effects of chromium supplementation on endocrine profiles, biomarkers of inflammation, and oxidative stress in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Biol Trace Elem Res. 2016;172(1):72–8. First citation in articleCrossref MedlineGoogle Scholar

  • 30 Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1. First citation in articleCrossref MedlineGoogle Scholar

  • 31 Richardson WS, Wilson MC, Nishikawa J, Hayward RS. The well-built clinical question: a key to evidence-based decisions. ACP Journal Club. 1995;123(3):A12–3. First citation in articleCrossref MedlineGoogle Scholar

  • 32 Higgins J, Green S. Assessing risk of bias in included studies. Cochrane handbook for systematic reviews of interventions Version 5.1. 0; 2011. 2008. First citation in articleCrossrefGoogle Scholar

  • 33 Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005;5:13. First citation in articleCrossref MedlineGoogle Scholar

  • 34 Saiyed ZM, Lugo JP. Impact of chromium dinicocysteinate supplementation on inflammation, oxidative stress, and insulin resistance in type 2 diabetic subjects: an exploratory analysis of a randomized, double-blind, placebo-controlled study. Food Nutr Res. 2016;60(1):31762. First citation in articleCrossref MedlineGoogle Scholar

  • 35 Nussbaumerova B, Rosolova H, Krizek M, Sefrna F, Racek J, Müller L, et al. Chromium supplementation reduces resting heart rate in patients with metabolic syndrome and impaired glucose tolerance. Biol Trace Elem Res. 2018;183(2):192–9. First citation in articleCrossref MedlineGoogle Scholar

  • 36 Modarres SZ, Siavashani MA, Mirhosseini N, Aghadavod E, Salehpour S, Asemi Z. The effects of chromium supplementation on gene expression of insulin, lipid, and inflammatory markers in infertile women with polycystic ovary syndrome candidate for in vitro fertilization: a randomized, double-blinded, placebo-controlled trial. Front Endocrinol. 2018;9:726. First citation in articleCrossref MedlineGoogle Scholar

  • 37 Oberley LW. Free radicals and diabetes. Free Radic Biol Med. 1988;5(2):113–24. First citation in articleCrossref MedlineGoogle Scholar

  • 38 Pieper GM, Jordan M, Dondlinger LA, Adams MB, Roza AM. Peroxidative stress in diabetic blood vessels. Reversal by pancreatic islet transplantation. Diabetes. 1995;44(8):884–9. First citation in articleCrossref MedlineGoogle Scholar

  • 39 Wolff SP, Jiang ZY, Hunt JV. Protein glycation and oxidative stress in diabetes mellitus and ageing. Free Radic Biol Med. 1991;10(5):339–52. First citation in articleCrossref MedlineGoogle Scholar

  • 40 Mahmoodpoor A, Hamishehkar H, Shadvar K, Ostadi Z, Sanaie S, Saghaleini SH, et al. The effect of intravenous selenium on oxidative stress in critically ill patients with acute respiratory distress syndrome. Immunol Invest. 2019;48(2):147–59. First citation in articleCrossref MedlineGoogle Scholar

  • 41 Mezzaroba L, Alfieri DF, Colado Simao AN, Vissoci Reiche EM. The role of zinc, copper, manganese and iron in neurodegenerative diseases. Neurotoxicology. 2019;74:230–41. First citation in articleCrossref MedlineGoogle Scholar

  • 42 Olechnowicz J, Tinkov A, Skalny A, Suliburska J. Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J Physiol Sci. 2018;68(1):19–31. First citation in articleCrossref MedlineGoogle Scholar

  • 43 Vincent JB. Recent advances in the nutritional biochemistry of trivalent chromium. Proc Nutr Soc. 2004;63(1):41–7. First citation in articleCrossref MedlineGoogle Scholar

  • 44 Tan GY, Zheng SS, Zhang MH, Feng JH, Xie P, Bi JM. Study of oxidative damage in growing-finishing pigs with continuous excess dietary chromium picolinate intake. Biol Trace Elem Res. 2008;126(1–3):129–40. First citation in articleCrossref MedlineGoogle Scholar

  • 45 Thomas VL, Gropper SS. Effect of chromium nicotinic acid supplementation on selected cardiovascular disease risk factors. Biol Trace Elem Res. 1996;55(3):297–305. First citation in articleCrossref MedlineGoogle Scholar

  • 46 Trow LG, Lewis J, Greenwood RH, Sampson MJ, Self KA, Crews HM, et al. Lack of effect of dietary chromium supplementation on glucose tolerance, plasma insulin and lipoprotein levels in patients with type 2 diabetes. Int J Vitam Nutr Res. 2000;70(1):14–8. First citation in articleLinkGoogle Scholar

  • 47 Xu X, Liu L, Long SF, Piao XS, Ward TL, Ji F. Effects of chromium methionine supplementation with different sources of zinc on growth performance, carcass traits, meat quality, serum metabolites, endocrine parameters, and the antioxidant status in growing-finishing pigs. Biol Trace Elem Res. 2017;179(1):70–8. First citation in articleCrossref MedlineGoogle Scholar

  • 48 Jain SK, McVie R, Duett J, Herbst JJ. Erythrocyte membrane lipid peroxidation and glycosylated hemoglobin in diabetes. Diabetes. 1989;38(12):1539–43. First citation in articleCrossref MedlineGoogle Scholar

  • 49 Tezuka M, Ishii S, Okada S. Chromium (III) decreases carbon tetrachloride-originated trichloromethyl radical in mice. J Inorg Biochem. 1991;44(4):261–5. First citation in articleCrossref MedlineGoogle Scholar

  • 50 Duman BS, Öztürk M, Yilmazer S, Hatemi H. Thiols, malonaldehyde and total antioxidant status in the Turkish patients with type 2 diabetes mellitus. Tohoku J Exp Med. 2003;201(3):147–55. First citation in articleCrossref MedlineGoogle Scholar

  • 51 Vladeva S, Terzieva D, Arabadjiiska D. Effect of chromium on the insulin resistance in patients with type II diabetes mellitus. Folia Medica. 2005;47(3–4):59–62. First citation in articleMedlineGoogle Scholar