Skip to main content
Original Communication

Effects of omega fatty acids on the short-term postprandial satiety related peptides in rats

Published Online:https://doi.org/10.1024/0300-9831/a000743

Abstract: We aimed to assess the effects of omega fatty acids on time depending on responses of satiety hormones. Sixty adult rats were randomly divided into 4 groups; linoleic acid (LA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) groups. For each fatty acid, the dose of 400 mg/kg was applied by oral gavage. Blood samples were taken after the 15, 30, 60 and 120 minutes. Ghrelin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), peptide YY (PYY), leptin and insulin hormones were analyzed by ELISA. We observed the significant increases (p<0.05) of the levels of CCK between n-3 (ALA, at 60th min; EPA, at 30th and 60th min and DHA, at 60 min) and n-6 (LA) supplemented rats. The highest GLP-1 levels were in ALA (0.70 ng/mL) and DHA (0.67 ng/mL) supplemented groups at 60th and 120th min indicating n-3 fatty acids efficiency on satiety compared to LA. It seems that ALA at 60th min and EPA at 120th min could provide the highest satiety effect with the highest insulin response, while the efficiency of LA supplementation on insulin-induced satiety diminished. The only significant change in AUC values among all hormones was in the CCK of the ALA group (p=0.004). The level of leptin increased in DHA and EPA supplemented rats (p=0.140). Our results showed that dietary omega fatty acids influenced the releasing of hormones in different ways possibly depending on chain length or saturation degree. Comprehensive studies need to be addressed for each fatty acid on satiety-related peptide hormones.

References

  • 1 Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Central nervous system control of food intake and body weight. Nature. 2006;443(7109):289–95. https://doi.org/10.1038/nature05026 First citation in articleCrossref MedlineGoogle Scholar

  • 2 Bonacic K, Campoverde C, Gómez-Arbonés J, Gisbert E, Estevez A, Morais S. Dietary fatty acid composition affects food intake and gut-brain satiety signaling in Senegalese sole (Solea senegalensis, Kaup 1858) larvae and post-larvae. Gen Comp Endocrinol. 2016;228:79–94. https://doi.org/10.1016/j.ygcen.2016.02.002 First citation in articleCrossref MedlineGoogle Scholar

  • 3 Hariri M, Ghiasvand R, Shiranian A, Askari G, Iraj B, Salehi-Abargouei A. Does omega-3 fatty acids supplementation affect circulating leptin levels? A systematic review and meta-analysis on randomized controlled clinical trials. Clin Endocrinol. 2015;82(2):221–8. First citation in articleCrossref MedlineGoogle Scholar

  • 4 Little TJ, Feinle-Bisset C. Effects of dietary fat on appetite and energy intake in health and obesity – Oral and gastrointestinal sensory contributions. Physiol Behav. 2011;104(4):613–20. https://doi.org/10.1016/j.physbeh.2011.04.038 First citation in articleCrossref MedlineGoogle Scholar

  • 5 Gibbs J, Young RC, Smith GP. Cholecystokinin decreases food intake in rats1. Obes Res. 1997;5(3):284–90. https://doi.org/10.1002/j.1550-8528.1997.tb00305.x First citation in articleCrossref MedlineGoogle Scholar

  • 6 Havel PJ, Peripheral signals conveying metabolic information to the brain: short-term and long-term regulation of food intake and energy homeostasis. Exp Biol Med. 2001;226(11):963–77. https://doi.org/10.1177/153537020122601102 First citation in articleCrossrefGoogle Scholar

  • 7 Matzinger D, Degen L, Drewe J, Meuli J, Duebendorfer R, Ruckstuhl N, et al. The role of long chain fatty acids in regulating food intake and cholecystokinin release in humans. Gut. 2000;46(5):688–93. First citation in articleCrossref MedlineGoogle Scholar

  • 8 Feltrin KL, Little TJ, Meyer JH, Horowitz M, Smout AJPM, Wishart J, et al. Effects of intraduodenal fatty acids on appetite, antropyloroduodenal motility, and plasma CCK and GLP-1 in humans vary with their chain length. Am J Physiol Integr Comp Physiol. 2004;287(3):R524–33. https://doi.org/10.1152/ajpregu.00039.2004 First citation in articleCrossref MedlineGoogle Scholar

  • 9 Lawton CL, Delargy HJ, Brockman J, Smith FC, Blundell JE. The degree of saturation of fatty acids influences post-ingestive satiety. Br J Nutr. 2000;83(5):473–82. First citation in articleCrossref MedlineGoogle Scholar

  • 10 McLaughlin J, Lucà MG, Jones MN, D’Amato M, Dockray GJ, Thompson DG. Fatty acid chain length determines cholecystokinin secretion and effect on human gastric motility. Gastroenterology. 1999;116(1):46–53. First citation in articleCrossref MedlineGoogle Scholar

  • 11 Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132(6):2131–2157. https://doi.org/10.1053/j.gastro.2007.03.054 First citation in articleCrossref MedlineGoogle Scholar

  • 12 Karhunen LJ, Juvonen KR, Huotari A, Purhonen AK, Herzig KH. Effect of protein, fat, carbohydrate and fibre on gastrointestinal peptide release in humans. Regul Pept. 2008;149(1):70–8. First citation in articleCrossref MedlineGoogle Scholar

  • 13 Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 2006;368(9548):1696–705. First citation in articleCrossref MedlineGoogle Scholar

  • 14 Näslund E, Barkeling B, King N, Gutniak M, Blundell JE, Holst JJ, et al. Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men. Int J Obes. 1999;23(3):304–11. https://doi.org/10.1038/sj.ijo.0800818 First citation in articleCrossrefGoogle Scholar

  • 15 Dagogo-Jack S. Leptin: Regulation and clinical applications. Leptin Regul Clin Appl. 2015;2:1–287. First citation in articleGoogle Scholar

  • 16 Briggs DI, Andrews ZB. Metabolic status regulates ghrelin function on energy homeostasis. Neuroendocrinology. 2011;93(1):48–57. First citation in articleCrossref MedlineGoogle Scholar

  • 17 Gale SM, Castracane VD, Mantzoros CS. Energy homeostasis, obesity and eating disorders: recent advances in endocrinology. J Nutr. 2004;134(2):295–8. https://doi.org/10.1093/jn/134.2.295 First citation in articleCrossref MedlineGoogle Scholar

  • 18 Schwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature. 2000;404(6778):661–71. https://doi.org/10.1038/35007534 First citation in articleCrossref MedlineGoogle Scholar

  • 19 Wang PYT, Caspi L, Lam CKL, Chari M, Li X, Light PE, et al. Upper intestinal lipids trigger a gut–brain–liver axis to regulate glucose production. Nature. 2008;452(7190):1012–6. https://doi.org/10.1038/nature06852 First citation in articleCrossref MedlineGoogle Scholar

  • 20 Elmadfa I, Kornsteiner M. Fats and fatty acid requirements for adults. Ann Nutr Metab. 2009;55(1–3):56–75. First citation in articleCrossref MedlineGoogle Scholar

  • 21 Harika RK, Eilander A, Alssema M, Osendarp SJM, Zock PL. Intake of fatty acids in general populations worldwide does not meet dietary recommendations to prevent coronary heart disease: A systematic review of data from 40 countries. Ann Nutr Metab. 2013;63(3):229–38. First citation in articleCrossref MedlineGoogle Scholar

  • 22 Ito S, Sano Y, Nagasawa K, Matsuura N, Yamada Y, Uchinaka A, et al. Highly purified eicosapentaenoic acid ameliorates cardiac injury and adipose tissue inflammation in a rat model of metabolic syndrome. Obes Sci Pract. 2016;2(3):318–29. https://doi.org/10.1002/osp4.50 First citation in articleCrossref MedlineGoogle Scholar

  • 23 Rodrigues HG, Vinolo MAR, Magdalon J, Fujiwara H, Cavalcanti DMH, Farsky SHP, et al. Dietary free oleic and linoleic acid enhances neutrophil function and modulates the inflammatory response in rats. Lipids. 2010;45(9):809–19. https://doi.org/10.1007/s11745-010-3461-9 First citation in articleCrossref MedlineGoogle Scholar

  • 24 Wurtman RJ, Ulus IH, Cansev M, Watkins CJ, Wang L, Marzloff G. Synaptic proteins and phospholipids are increased in gerbil brain by administering uridine plus docosahexaenoic acid orally. Brain Res. 2006;1088(1):83–92. First citation in articleCrossref MedlineGoogle Scholar

  • 25 Maljaars J, Romeyn EA, Haddeman E, Peters HPF, Masclee AAM. Effect of fat saturation on satiety, hormone release, and food intake. Am J Clin Nutr. 2009;89(4):1019–24. First citation in articleCrossref MedlineGoogle Scholar

  • 26 Parra D, Ramel A, Bandarra N, Kiely M, Martínez JA, Thorsdottir I. A diet rich in long chain omega-3 fatty acids modulates satiety in overweight and obese volunteers during weight loss. Appetite. 2008;51(3):676–80. First citation in articleCrossref MedlineGoogle Scholar

  • 27 Pironi L, Stanghellini V, Miglioli M, Corinaldesi R, De Giorgio R, Ruggeri E, et al. Fat-induced heal brake in humans: A dose-dependent phenomenon correlated to the plasma levels of peptide YY. Gastroenterology. 1993;105(3):733–9. First citation in articleCrossref MedlineGoogle Scholar

  • 28 Harden CJ, Jones AN, Maya-Jimenez T, Barker ME, Hepburn NJ, Garaiova I, et al. Effect of different long-chain fatty acids on cholecystokinin release in vitro and energy intake in free-living healthy males. Br J Nutr. 2012;108(4):755–8. First citation in articleCrossref MedlineGoogle Scholar

  • 29 Campbell S, Bello N. Omega-3 fatty acids and obesity. J Food Nutr Disord. 2012;1:01. First citation in articleCrossrefGoogle Scholar

  • 30 Aguilera CM, Gil-Campos M, Cañete R, Gil Á. Alterations in plasma and tissue lipids associated with obesity and metabolic syndrome. Clin Sci. 2008;114(3):183–93. https://doi.org/10.1042/CS20070115 First citation in articleCrossrefGoogle Scholar

  • 31 Guest J, Garg M, Bilgin A, Grant R. Relationship between central and peripheral fatty acids in humans. Lipids Health Dis. 2013;12(1):79. https://doi.org/10.1186/1476-511X-12-79 First citation in articleCrossref MedlineGoogle Scholar

  • 32 Lean MEJ, Malkova D. Altered gut and adipose tissue hormones in overweight and obese individuals: Cause or consequence. Int J Obes. 2016;40(4):622–32. https://doi.org/10.1038/ijo.2015.220 First citation in articleCrossrefGoogle Scholar

  • 33 Psichas A, Sleeth ML, Murphy KG, Brooks L, Bewick GA, Hanyaloglu AC, et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J Obes. 2015;39(3):424–9. https://doi.org/10.1038/ijo.2014.153 First citation in articleCrossrefGoogle Scholar

  • 34 Cvijanovic N, Isaacs NJ, Rayner CK, Feinle-Bisset C, Young RL, Little TJ. Duodenal fatty acid sensor and transporter expression following acute fat exposure in healthy lean humans. Clin Nutr. 2017;36(2):564–9. First citation in articleCrossref MedlineGoogle Scholar

  • 35 Voortman T, Hendriks HF, Witkamp RF, Wortelboer HM. Effects of long- and short-chain fatty acids on the release of gastrointestinal hormones using an ex vivo porcine intestinal tissue model. J Agric Food Chem. 2012;60(36):9035–42. First citation in articleCrossref MedlineGoogle Scholar

  • 36 Morishita M, Tanaka T, Shida T, Takayama K. Usefulness of colon targeted DHA and EPA as novel diabetes medications that promote intrinsic GLP-1 secretion. J Control Release. 2008;132(2):99–104. First citation in articleCrossref MedlineGoogle Scholar

  • 37 Feltrin KL, Patterson M, Ghatei MA, Bloom SR, Meyer JH, Horowitz M, et al. Effect of fatty acid chain length on suppression of ghrelin and stimulation of PYY, GLP-2 and PP secretion in healthy men. Peptides. 2006;27(7):1638–43. First citation in articleCrossref MedlineGoogle Scholar

  • 38 Feltrin KL, Little TJ, Meyer JH, Horowitz M, Rades T, Wishart J, et al. Comparative effects of intraduodenal infusions of lauric and oleic acids on antropyloroduodenal motility, plasma cholecystokinin and peptide YY, appetite, and energy intake in healthy men. Am J Clin Nutr. 2008;87(5):1181–7. https://doi.org/10.1093/ajcn/87.5.1181 First citation in articleCrossref MedlineGoogle Scholar

  • 39 Paton CM, Son Y, Vaughan RA, Cooper JA. Free fatty acid-induced peptide YY expression is dependent on TG synthesis rate and Xbp1 splicing. Int J Mol Sci. 2020;21(9):3368. First citation in articleCrossref MedlineGoogle Scholar

  • 40 Miles JM, Wooldridge D, Grellner WJ, Windsor S, Isley WL, Klein S, et al. Nocturnal and postprandial free fatty acid kinetics in normal and type 2 diabetic subjects. Diabetes. 2003;52(3):675–681. First citation in articleCrossref MedlineGoogle Scholar

  • 41 Batterham RL, Cohen MA, Ellis SM, Le Roux CW, Withers DJ, Frost GS, et al. Inhibition of food intake in obese subjects by peptide YY3–36. N Engl J Med. 2003;349(10):941–8. https://doi.org/10.1056/NEJMoa030204 First citation in articleCrossref MedlineGoogle Scholar

  • 42 Adrian TE, Ferri G-L, Bacarese-Hamilton AJ, Fuessl HS, Polak JM, Bloom SR. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology. 1985;89(5):1070–7. First citation in articleCrossref MedlineGoogle Scholar

  • 43 Stevenson JL, Paton CM, Cooper JA. Hunger and satiety responses to high-fat meals after a high-polyunsaturated fat diet: A randomized trial. Nutrition. 2017;41:14–23. First citation in articleCrossref MedlineGoogle Scholar

  • 44 Beysen C, Karpe F, Fielding B, Clark A, Levy J, Frayn K. Interaction between specific fatty acids, GLP-1 and insulin secretion in humans. Diabetologia. 2002;45(11):1533–41. https://doi.org/10.1007/s00125-002-0964-9 First citation in articleCrossref MedlineGoogle Scholar

  • 45 MacIntosh CG, Holt SHA, Brand-Miller JC. The degree of fat saturation does not alter glycemic, insulinemic or satiety responses to a starchy staple in healthy men. J Nutr. 2003;133(8):2577–80. https://doi.org/10.1093/jn/133.8.2577 First citation in articleCrossref MedlineGoogle Scholar

  • 46 Cintra DE, Ropelle ER, Moraes JC, Pauli JR, Morari J, de Souza CT, et al. Unsaturated fatty acids revert diet-induced hypothalamic inflammation in obesity. PLoS One. 2012;7(1):e30571. First citation in articleCrossref MedlineGoogle Scholar

  • 47 Fernandes MF, Tache MC, Klingel SL, Leri F, Mutch DM. Safflower (n-6) and flaxseed (n-3) high-fat diets differentially regulate hypothalamic fatty acid profiles, gene expression, and insulin signalling. Prostaglandins Leukot Essent Fat Acids. 2018;128:67–73. First citation in articleCrossref MedlineGoogle Scholar

  • 48 Kentish SJ, Wittert GA, Blackshaw LA, Page AJ. A chronic high fat diet alters the homologous and heterologous control of appetite regulating peptide receptor expression. Peptides. 2013;46:150–8. First citation in articleCrossref MedlineGoogle Scholar

  • 49 Kong A, Neuhouser ML, Xiao L, Ulrich CM, McTiernan A, Foster-Schubert KE. Higher habitual intake of dietary fat and carbohydrates are associated with lower leptin and higher ghrelin concentrations in overweight and obese postmenopausal women with elevated insulin levels. Nutr Res. 2009;29(11):768–76. First citation in articleCrossref MedlineGoogle Scholar

  • 50 Gray B, Steyn F, Davies PSW, Vietta L. Omega-3 fatty acids: a review of the effects on adiponectin and leptin and potential implications for obesity management. Eur J Clin Nutr. 2013;67:1234–42. https://doi.org/10.1038/ejcn.2013.197 First citation in articleCrossref MedlineGoogle Scholar

  • 51 Rausch J, Gillespie S, Orchard T, Tan A, McDaniel JC. Systematic review of marine-derived omega-3 fatty acid supplementation effects on leptin, adiponectin, and the leptin-to-adiponectin ratio. Nutr Res. 2021;85:135–52. First citation in articleCrossref MedlineGoogle Scholar

  • 52 Feinle-Bisset C, Patterson M, Ghatei MA, Bloom SR, Horowitz M. Fat digestion is required for suppression of ghrelin and stimulation of peptide YY and pancreatic polypeptide secretion by intraduodenal lipid. Am J Physiol Metab. 2005;289(6):E948–53. https://doi.org/10.1152/ajpendo.00220.2005 First citation in articleCrossref MedlineGoogle Scholar

  • 53 Cummings DE, Overduin J. Gastrointestinal regulation of food intake. J Clin Invest. 2007;117(1). First citation in articleCrossrefGoogle Scholar