Skip to main content
Review

PCSK9 inhibition for LDL lowering and beyond – implications for patients with peripheral artery disease

Published Online:https://doi.org/10.1024/0301-1526/a000689

Abstract. Low-density lipoprotein cholesterol (LDL-C) has been proven to be a causal factor of atherosclerosis and, along with other triggers like inflammation, the most frequent reason for peripheral arterial disease. Moreover, a linear correlation between LDL-C concentration and cardiovascular outcome in high-risk patients could be established during the past century. After the development of statins, numerous randomized trials have shown the superiority for LDL-C reduction and hence the decrease in cardiovascular outcomes including mortality. Over the past decades it became evident that more intense LDL-C lowering, by either the use of highly potent statin supplements or by additional cholesterol absorption inhibitor application, accounted for an even more profound cardiovascular risk reduction. Proprotein convertase subtilisin/kexin type 9 (PCSK9), a serin protease with effect on the LDL receptor cycle leading to its degradation and therefore preventing continuing LDL-C clearance from the blood, is the target of a newly developed monoclonal antibody facilitating astounding LDL-C reduction far below to what has been set as target level by recent ESC/EAS guidelines in management of dyslipidaemias. Large randomized outcome trials including subjects with PAD so far have been able to prove significant and even more intense cardiovascular risk reduction via further LDL-C debasement on top of high-intensity statin medication. Another approach for LDL-C reduction is a silencing interfering RNA muting the translation of PCSK9 intracellularly. Moreover, PCSK9 concentrations are elevated in cells involved in plaque composition, so the potency of intracellular PCSK9 inhibition and therefore prevention or reversal of plaques may provide this mechanism of action on PCSK9 with additional beneficial effects on cells involved in plaque formation. Thus, simultaneous application of statins and PCSK9 inhibitors promise to reduce cardiovascular event burden by both LDL-C reduction and pleiotropic effects of both agents.

Literature

  • Classics in arteriosclerosis research: On experimental cholesterin steatosis and its significance in the origin of some pathological processes by N. Anitschkow and S. Chalatow, translated by Mary Z. Pelias, 1913. Arteriosclerosis. 1983;3:178–82. First citation in articleGoogle Scholar

  • Kannel WB, Dawber TR, Kagan A, Revotskie N & Stokes J 3rd. Factors of risk in the development of coronary heart disease – six year follow-up experience. The Framingham Study. Ann Intern Med. 1961;55:33–50. First citation in articleCrossref MedlineGoogle Scholar

  • Nobelprize.org. The Nobel Prize in Physiology or Medicine 1985 [Internet]. Nobel Media AB. 2014. [cited 31 Aug 2017]. Available from: https://www.nobelprize.org/nobel_prizes/medicine/laureates/1985/. First citation in articleGoogle Scholar

  • Goldstein JL & Brown MS. History of Discovery: The LDL Receptor. Arterioscler Thromb Vasc Biol. 2009;29:431–8. First citation in articleCrossref MedlineGoogle Scholar

  • Leren P. The Oslo diet-heart study. Eleven-year report. Circulation. 1970;42:935–42. First citation in articleCrossref MedlineGoogle Scholar

  • Buchwald H, Varco RL, Matts JP, Long JM, Fitch LL & Campbell GS, et al. Effect of partial ileal bypass surgery on mortality and morbidity from coronary heart disease in patients with hypercholesterolemia. Report of the Program on the Surgical Control of the Hyperlipidemias (POSCH). N Engl J Med. 1990;323:946–55. First citation in articleCrossref MedlineGoogle Scholar

  • Stossel TP. The discovery of statins. Cell. 2008;134:903–5. First citation in articleCrossref MedlineGoogle Scholar

  • Scandinavian Simvastatin Survival Study Group. Randomized trial of cholesterol-lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet. 1994;344:1383–9. First citation in articleMedlineGoogle Scholar

  • Cannon CP, Braunwald E, McCabe CH, Rader DJ, Rouleau JL & Belder R, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med. 2004;350:1495–504. First citation in articleCrossref MedlineGoogle Scholar

  • Nissen SE. Effect of intensive lipid lowering on progression of coronary atherosclerosis: evidence for an early benefit from the Reversal of Atherosclerosis with Aggressive Lipid Lowering (REVERSAL) trial. Am J Cardiol. 2005;96:61F–68F. First citation in articleCrossref MedlineGoogle Scholar

  • Nissen SE, Nicholls SJ, Sipahi I, Libby P, Raichlen JS & Ballantyne CM, et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA. 2006;295:1556–65. First citation in articleCrossref MedlineGoogle Scholar

  • Gao WQ, Feng QZ, Li YF, Li YX, Huang Y & Chen YM, et al. Systematic study of the effects of lowering low-density lipoprotein-cholesterol on regression of coronary atherosclerotic plaques using intravascular ultrasound. BMC Cardiovasc Disord. 2014;14:60. First citation in articleCrossref MedlineGoogle Scholar

  • Cholesterol Treatment Trialists’ (CTT) Collaboration, Baigent C, Blackwell L, Emberson J, Holland LE & Reith C, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170 000 participants in 26 randomised trials. Lancet. 2010;376:1670–81. First citation in articleCrossref MedlineGoogle Scholar

  • Cholesterol Treatment Trialists’ (CTT) Collaborators, Mihaylova B, Emberson J, Blackwell L, Barnes EH & Voysey M, et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet. 2012;380:581–90. First citation in articleCrossref MedlineGoogle Scholar

  • Heart Protection Study Collaborative Group. Randomized trial of the effects of cholesterol-lowering with simvastatin on peripheral vascular and other major vascular outcomes in 20,536 people with peripheral arterial disease and other high-risk conditions. J Vasc Surg. 2007;45:645–54. First citation in articleCrossref MedlineGoogle Scholar

  • Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD & Murphy SA, et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N Engl J Med. 2017;376:1713–22. First citation in articleCrossref MedlineGoogle Scholar

  • Ridker PM, Tardif JC, Amarenco P, Duggan W, Glynn RJ & Jukema JW, et al. Lipid-Reduction Variability and Antidrug-Antibody Formation with Bococizumab. N Engl J Med. 2017;376:1517–26. First citation in articleCrossref MedlineGoogle Scholar

  • Ramos R, Garcia-Gil M, Comas-Cufi M, Quesada M, Marrugat J & Elosua R, et al. Statins for Prevention of Cardiovascular Events in a Low-Risk Population With Low Ankle Brachial Index. J Am Coll Cardiol. 2016;67:630–40. First citation in articleCrossref MedlineGoogle Scholar

  • Kumbhani DJ, Steg PG, Cannon CP, Eagle KA, Smith SC Jr & Goto S, et al. Statin therapy and long-term adverse limb outcomes in patients with peripheral artery disease: insights from the REACH registry. Eur Heart J. 2014;35:2864–72. First citation in articleCrossref MedlineGoogle Scholar

  • Catapano AL, Graham I, De Backer G, Wiklund O, Chapman MJ & Drexel H, et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Eur Heart J. 2016;37:2999–3058. First citation in articleCrossref MedlineGoogle Scholar

  • Aboyans V, Ricco JB, Bartelink MEL, Björck M, Brodmann M & Cohnert T, et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries. Endorsed by: the European Stroke Organization (ESO), The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur Heart J. 2017; doi:10.1093/eurheartj/ehx095. First citation in articleGoogle Scholar

  • Gerhard-Herman MD, Gornik HL, Barrett C, Barshes NR, Corriere MA & Drachman DE, et al. 2016 AHA/ACC Guideline on the Management of Patients With Lower Extremity Peripheral Artery Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2017;69:e71–e126. First citation in articleCrossref MedlineGoogle Scholar

  • Stroes ES, Thompson PD, Corsini A, Vladutiu GD, Raal FJ & Ray KK, et al. Statin-associated muscle symptoms: impact on statin therapy-European Atherosclerosis Society Consensus Panel Statement on Assessment, Aetiology and Management. Eur Heart J. 2015;36:1012–22. First citation in articleCrossref MedlineGoogle Scholar

  • Phillips PS, Haas RH, Bannykh S, Hathaway S, Gray NL & Kimura BJ, et al. Statin-associated myopathy with normal creatine kinase levels. Ann Intern Med. 2002;137:581–5. First citation in articleCrossref MedlineGoogle Scholar

  • Phillips PS. Ezetimibe and statin-associated myopathy. Ann Intern Med. 2004;141:649. First citation in articleCrossref MedlineGoogle Scholar

  • Collins R, Reith C, Emberson J, Armitage J, Baigent C & Blackwell L, et al. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet. 2016;388:2532–61. First citation in articleCrossref MedlineGoogle Scholar

  • Dubuc G, Chamberland A, Wassef H, Davignon J, Seidah NG & Bernier L, et al. Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2004;24:1454–9. First citation in articleCrossref MedlineGoogle Scholar

  • Ridker PM, Mora S & Rose L, JUPITER Trial Study Group. Percent reduction in LDL cholesterol following high-intensity statin therapy: potential implications for guidelines and for the prescription of emerging lipid-lowering agents. Eur Heart J. 2016;37:1373–9. First citation in articleCrossref MedlineGoogle Scholar

  • Shapiro MD & Fazio S. PCSK9 and Atherosclerosis – Lipids and Beyond. J Atheroscler Thromb. 2017;24:462–72. First citation in articleCrossref MedlineGoogle Scholar

  • Seidah NG, Benjannet S, Wickham L, Marcinkiewicz J, Jasmin SB & Stifani S, et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci U S A. 2003;100:928–33. First citation in articleCrossref MedlineGoogle Scholar

  • Abifadel M, Varret M, Rabès JP, Allard D, Ouguerram K & Devillers M, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34:154–6. First citation in articleCrossref MedlineGoogle Scholar

  • Victor RG, Haley RW, Willett DL, Peshock RM, Vaeth PC & Leonard D, et al. The Dallas Heart Study: a population-based probability sample for the multidisciplinary study of ethnic differences in cardiovascular health. Am J Cardiol. 2004;93:1473–80. First citation in articleCrossref MedlineGoogle Scholar

  • Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK & Hobbs HH. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet. 2005;37:161–5. First citation in articleCrossref MedlineGoogle Scholar

  • Cohen JC, Boerwinkle E, Mosley TH Jr & Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354:1264–72. First citation in articleCrossref MedlineGoogle Scholar

  • Folsom AR, Peacock JM & Boerwinkle E, Atherosclerosis Risk in Communities (ARIC) Study Investigators. Variation in PCSK9, low LDL cholesterol, and risk of peripheral arterial disease. Atherosclerosis. 2009;202:211–5. First citation in articleCrossref MedlineGoogle Scholar

  • Piper DE, Jackson S, Liu Q, Romanow WG, Shetterly S & Thibault ST, et al. The crystal structure of PCSK9: A regulator of plasma LDL-cholesterol. Structure. 2007;15:545–52. First citation in articleCrossref MedlineGoogle Scholar

  • Cunningham D, Danley DE, Geoghegan KF, Griffor MC, Hawkins JL & Subashi TA, et al. Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Nat Struct Mol Biol. 2007;14:413–9. First citation in articleCrossref MedlineGoogle Scholar

  • Stroes E, Guyton JR, Lepor N, Civeira F, Gaudet D & Watts GF, et al. Efficacy and Safety of Alirocumab 150 mg Every 4 Weeks in Patients With Hypercholesterolemia Not on Statin Therapy: The ODYSSEY CHOICE II Study. J Am Heart Assoc. 2016;5:e003421. First citation in articleCrossref MedlineGoogle Scholar

  • Roth EM, Moriarty PM, Bergeron J, Langslet G, Manvelian G & Zhao J, et al. A phase III randomized trial evaluating alirocumab 300 mg every 4 weeks as monotherapy or add-on to statin: ODYSSEY CHOICE I. Atherosclerosis. 2016;254:254–62. First citation in articleCrossref MedlineGoogle Scholar

  • Farnier M, Jones P, Severance R, Averna M, Steinhagen-Thiessen E & Colhoun HM, et al. Efficacy and safety of adding alirocumab to rosuvastatin versus adding ezetimibe or doubling the rosuvastatin dose in high cardiovascular-risk patients: The ODYSSEY OPTIONS II randomized trial. Atherosclerosis. 2016;244:138–46. First citation in articleCrossref MedlineGoogle Scholar

  • Robinson JG, Farnier M, Krempf M, Bergeron J, Luc G & Averna M, et al. Efficacy and Safety of Alirocumab in Reducing Lipids and Cardiovascular Events. N Engl J Med. 2015;372:1489–99. First citation in articleCrossref MedlineGoogle Scholar

  • Moriarty PM, Thompson PD, Cannon CP, Guyton JR, Bergeron J & Zieve FJ, et al. Efficacy and safety of alirocumab vs ezetimibe in statin-intolerant patients, with a statin rechallenge arm: The ODYSSEY ALTERNATIVE randomized trial. J Clin Lipidol. 2015;9:758–69. First citation in articleCrossref MedlineGoogle Scholar

  • Roth EM, Taskinen MR, Ginsberg HN, Kastelein JJP, Colhoun HM & Robinson JG, et al. Monotherapy with the PCSK9 inhibitor alirocumab versus ezetimibe in patients with hypercholesterolemia: Results of a 24 week, double-blind, randomized Phase 3 trial. Int J Cardiol. 2014;176:55–61. First citation in articleCrossref MedlineGoogle Scholar

  • Cannon CP, Cariou B, Blom D, McKenney JM, Lorenzato C & Pordy R, et al. Efficacy and safety of alirocumab in high cardiovascular risk patients with inadequately controlled hypercholesterolaemia on maximally tolerated doses of statins: the ODYSSEY COMBO II randomized controlled trial. Eur Heart J. 2015;36:1186–94. First citation in articleCrossref MedlineGoogle Scholar

  • Kereiakes DJ, Robinson JG, Cannon CP, Lorenzato C, Pordy R & Chaudhari U, et al. Efficacy and safety of the proprotein convertase subtilisin/kexin type 9 inhibitor alirocumab among high cardiovascular risk patients on maximally tolerated statin therapy: The ODYSSEY COMBO I study. Am Heart J. 2015;169:906–15. First citation in articleCrossref MedlineGoogle Scholar

  • Kastelein JJP, Robinson JG, Farnier M, Krempf M, Langslet G & Lorenzato C, et al. Efficacy and safety of alirocumab in patients with heterozygous familial hypercholesterolemia not adequately controlled with current lipid-lowering therapy: design and rationale of the ODYSSEY FH studies. Cardiovasc Drugs Ther. 2014;28:281–9. First citation in articleCrossref MedlineGoogle Scholar

  • Schwartz GG, Bessac L, Berdan LG, Bhatt DL, Bittner V & Diaz R, et al. Effect of alirocumab, a monoclonal antibody to PCSK9, on long-term cardiovascular outcomes following acute coronary syndromes: rationale and design of the ODYSSEY outcomes trial. Am Heart J. 2014;168:682–9. First citation in articleCrossref MedlineGoogle Scholar

  • Ridker PM, Amarenco P, Brunell R, Glynn RJ, Jukema JW & Kastelein JJP, et al. Evaluating bococizumab, a monoclonal antibody to PCSK9, on lipid levels and clinical events in broad patient groups with and without prior cardiovascular events: Rationale and design of the Studies of PCSK9 Inhibition and the Reduction of vascular Events (SPIRE) Lipid Lowering and SPIRE Cardiovascular Outcomes Trials. Am Heart J. 2016;178:135–44. First citation in articleMedlineGoogle Scholar

  • Ridker PM, Revkin J, Amarenco P, Brunell R, Curto M & Civeira F, et al. Cardiovascular Efficacy and Safety of Bococizumab in High-Risk Patients. N Engl J Med. 2017;376:1527–39. First citation in articleCrossref MedlineGoogle Scholar

  • Nissen SE, Stroes E, Dent-Acosta RE, Rosenson RS, Lehman SJ & Sattar N, et al. Efficacy and Tolerability of Evolocumab vs Ezetimibe in Patients With Muscle-Related Statin Intolerance: The GAUSS-3 Randomized Clinical Trial. JAMA. 2016;315:1580–90. First citation in articleCrossref MedlineGoogle Scholar

  • Stroes E, Colquhoun D, Sullivan D, Civeira F, Rosenson RS & Watts GF, et al. Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance: the GAUSS-2 randomized, placebo-controlled phase 3 clinical trial of evolocumab. J Am Coll Cardiol. 2014;63:2541–8. First citation in articleCrossref MedlineGoogle Scholar

  • Koren MJ, Lundqvist P, Bolognese M, Neutel JM, Monsalvo ML & Yang J, et al. Anti-PCSK9 monotherapy for hypercholesterolemia: the MENDEL-2 randomized, controlled phase III clinical trial of evolocumab. J Am Coll Cardiol. 2014;63:2531–40. First citation in articleCrossref MedlineGoogle Scholar

  • Sabatine MS, Giugliano RP, Wiviott SD, Raal FJ, Blom DJ & Robinson J, et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J. Med. 2015;372:1500–9. First citation in articleCrossref MedlineGoogle Scholar

  • Robinson JG, Nedergaard BS, Rogers WJ, Fialkow J, Neutel JM & Ramstad D, et al. Effect of evolocumab or ezetimibe added to moderate- or high-intensity statin therapy on LDL-C lowering in patients with hypercholesterolemia: the LAPLACE-2 randomized clinical trial. JAMA. 2014;311:1870–82. First citation in articleCrossref MedlineGoogle Scholar

  • Blom DJ, Hala T, Bolognese M, Lillestol MJ, Toth PD & Burgess L, et al. A 52-week placebo-controlled trial of evolocumab in hyperlipidemia. N Engl J Med. 2014;370:1809–19. First citation in articleCrossref MedlineGoogle Scholar

  • Kiyosue A, Honarpour N, Kurtz C, Xue A, Wasserman SM & Hirayama A. A Phase 3 Study of Evolocumab (AMG 145) in Statin-Treated Japanese Patients at High Cardiovascular Risk. Am J Cardiol. 2016;117:40–7. First citation in articleCrossref MedlineGoogle Scholar

  • Raal FJ, Honarpour N, Blom DJ, Hovingh GK, Xu F & Scott R, et al. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;385:341–50. First citation in articleCrossref MedlineGoogle Scholar

  • Raal FJ, Stein EA, Dufour R, Turner T, Civeira F & Burgess L, et al. PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;385:331–40. First citation in articleCrossref MedlineGoogle Scholar

  • Giugliano RP, Mach F, Zavitz K, Kurtz C, Schneider J & Wang H, et al. Design and rationale of the EBBINGHAUS trial: A phase 3, double-blind, placebo-controlled, multicenter study to assess the effect of evolocumab on cognitive function in patients with clinically evident cardiovascular disease and receiving statin background lipid-lowering therapy-A cognitive study of patients enrolled in the FOURIER trial. Clin Cardiol. 2017;40:59–65. First citation in articleMedlineGoogle Scholar

  • Bonaca MP, Nault P, Giugliano RP, Keech AC, Pineda AL & Kanevsky E, et al. Low-Density Lipoprotein Cholesterol Lowering With Evolocumab and Outcomes in Patients With Peripheral Artery Disease: Insights From the FOURIER Trial (Further Cardiovascular Outcomes Research With PCSK9 Inhibition in Subjects With Elevated Risk). Circulation. 2017 Nov 13. [Epub ahead or print] First citation in articleGoogle Scholar

  • Chen DC, Singh GD, Armstrong EJ, Waldo SW, Laird JR & Amsterdam EA. Long-Term Comparative Outcomes of Patients With Peripheral Artery Disease With and Without Concomitant Coronary Artery Disease. Am J Cardiol. 2017;119:1146–52. First citation in articleCrossref MedlineGoogle Scholar

  • Koskinas KC, Siontis GCM, Piccolo R, Mavridis D, Räber L & Mach F, et al. Effect of statins and non-statin LDL-lowering medications on cardiovascular outcomes in secondary prevention: a meta-analysis of randomized trials. Eur Heart J. 2017. doi: 10.1093/eurheartj/ehx566 [epub ahead of print]. First citation in articleGoogle Scholar

  • Ray KK, Landmesser U, Leiter LA, Kallend D, Dufour R & Karakas M, et al. Inclisiran in Patients at High Cardiovascular Risk with Elevated LDL Cholesterol. N Engl J Med. 2017;376:1430–40. First citation in articleCrossref MedlineGoogle Scholar

  • Davignon J. Beneficial cardiovascular pleiotropic effects of statins. Circulation. 2004;109:III39–43. First citation in articleGoogle Scholar

  • Bernelot Moens SJ, Neele AE, Kroon J, van der Valk FM, Van den Bossche J & Hoeksema MA, et al. PCSK9 monoclonal antibodies reverse the pro-inflammatory profile of monocytes in familial hypercholesterolaemia. Eur Heart J. 2017;38:1584–93. First citation in articleCrossref MedlineGoogle Scholar

  • Li S & Li JJ. PCSK9: A key factor modulating atherosclerosis. J Atheroscler Thromb. 2015;22:221–30. First citation in articleCrossref MedlineGoogle Scholar

  • Chao TH, Chen IC, Li YH, Lee PT & Tseng SY. Plasma Levels of Proprotein Convertase Subtilisin/Kexin Type 9 Are Elevated in Patients With Peripheral Artery Disease and Associated With Metabolic Disorders and Dysfunction in Circulating Progenitor Cells. J Am Heart Assoc. 2016;5:e003497. First citation in articleCrossref MedlineGoogle Scholar

  • Bittencourt MS & Cerci RJ. Statin effects on atherosclerotic plaques: regression or healing? BMC Med. 2015;13:260. First citation in articleCrossref MedlineGoogle Scholar

  • Wu CY, Tang ZH, Jiang L, Li XF, Jiang ZS & Liu LS. PCSK9 siRNA inhibits HUVEC apoptosis induced by ox-LDL via Bcl/Bax–caspase9–caspase3 pathway. Mol Cell Biochem. 2011;359:347–58. First citation in articleCrossref MedlineGoogle Scholar

  • Landmesser U, Chapman MJ, Stock JK, Amarenco P, Belch JJF & Borén J, et al. 2017 Update of ESC/EAS Task Force on practical clinical guidance for proprotein convertase subtilisin/kexin type 9 inhibition in patients with atherosclerotic cardiovascular disease or in familial hypercholesterolaemia. Eur Heart J. 2017. doi: 10.1093/eurheartj/ehx549 [Epub ahead of print]. First citation in articleGoogle Scholar

  • Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH & Ballantyne C, et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med. 2017;377:1119–31. First citation in articleCrossref MedlineGoogle Scholar

  • Tunstall-Pedoe H, Peters SAE, Woodward M, Struthers AD & Belch JJF. Twenty-Year Predictors of Peripheral Arterial Disease Compared With Coronary Heart Disease in the Scottish Heart Health Extended Cohort (SHHEC). J Am Heart Assoc. 2017;6:e005967. First citation in articleCrossref MedlineGoogle Scholar

  • Wald DS, Bestwick JP & Wald NJ. Child-parent screening for familial hypercholesterolaemia: screening strategy based on a meta-analysis. BMJ. 2007;335:599. First citation in articleCrossref MedlineGoogle Scholar

  • Descamps OS, Bruniaux M, Guilmot PF, Tonglet R & Heller FR. Lipoprotein concentrations in newborns are associated with allelic variations in their mothers. Atherosclerosis. 2004;172:287–98. First citation in articleCrossref MedlineGoogle Scholar