Skip to main content
Original Article

Picture Recognition Errors in the Differential Diagnosis of Alzheimer’s Disease

Published Online:https://doi.org/10.1024/1016-264X/a000263

Abstract. This article explores the possibility of differentiating between patients suffering from Alzheimer’s disease (AD) and patients with other kinds of dementia by focusing on false alarms (FAs) on a picture recognition task (PRT). In Study 1, we compared AD and non-AD patients on the PRT and found that FAs discriminate well between these groups. Study 2 served to improve the discriminatory power of the FA score on the picture recognition task by adding associated pairs. Here, too, the FA score differentiated well between AD and non-AD patients, though the discriminatory power did not improve. The findings suggest that AD patients show a liberal response bias. Taken together, these studies suggest that FAs in picture recognition are of major importance for the clinical diagnosis of AD.


Bilderkennungsfehler in der Differentialdiagnostik der Alzheimer Demenz

Zusammenfassung. Abstract: Dieser Artikel geht der Frage nach, ob sich Patienten mit Alzheimer Demenz (AD) und Patienten mit anderen Formen von Demenz mit Hilfe „Falscher Alarme“ (FA) bei einer Bilderkennungsaufgabe unterscheiden lassen. In Studie 1 verglichen wir AD- und Nicht-AD-Patienten im Hinblick auf die Bilderkennungsaufgabe und stellten fest, dass die FA-Werte gut zwischen beiden Gruppen differenzierten. Studie 2 zielte auf die Steigerung des Unterscheidungspotentials von FA-Werten durch die Hinzunahme weiterer Paare. Auch hier ließen sich AD- und Nicht-AD-Patienten gut mit Hilfe der FA-Werte unterscheiden, auch wenn das Differenzierungspotential sich nicht steigerte. Die Ergebnisse legen nahe, dass AD-Patienten einen großzügigen Reaktionsbias zeigen. Zusammengenommen stärken beide Studien die Hypothese, dass FAs bei der Bilderkennung für die klinische Diagnose von AD von großer Bedeutung sind.

Literature

  • Ally, B. A., Gold, C. A. & Budson, A. E. (2009). An evaluation of recollection and familiarity in Alzheimer’s disease and mild cognitive impairment using receiver operating characteristics. Brain and Cognition, 69, 504–513. First citation in articleCrossrefGoogle Scholar

  • Ashford, J. W. (2019). The dichotomy of Alzheimer’s disease pathology: Amyloid-beta and tau. Journal of Alzheimer’s Disease, 68(1), 77–83. doi 10.3233/JAD-181198 First citation in articleCrossrefGoogle Scholar

  • Balota, D. A., Cortese, M. J., Duchek, J. M., Adams, D., Roediger III, H. L., Mcdermott, K. B. & Yerys, B. E. (1999). Veridical and false memories in healthy older adults and in dementia of the Alzheimer’s type. Cognitive Neuropsychology, 16, 361–384. First citation in articleCrossrefGoogle Scholar

  • Blackwell, A. D., Sahakian, B. J., Vesey, R., Semple, J. M., Robbins, T. W. & Hodges, J. R. (2004). Detecting dementia: Novel neuropsychological markers of preclinical Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 17, 42–48. First citation in articleCrossrefGoogle Scholar

  • Braak, H. & Braak, E. (1991). Neuropathological staging of Alzheimer-related changes. Acta neuropathologica, 82, 239–259. First citation in articleCrossrefGoogle Scholar

  • Budson, A. E., Michalska, K. J., Sullivan, A. L., Rentz, D. M., Daffner, K. R. & Schacter, D. L. (2003). False recognition in Alzheimer disease: Evidence from categorized pictures. Cognitive Behavioral Neurology, 16, 16–27. First citation in articleCrossrefGoogle Scholar

  • Budson, A., Sullivan, A., Mayer, E., Daffner, K., Black, P. & Schacter, D. (2002). Suppression of false recognition in Alzheimer’s disease and in patients with frontal lobe lesions. Brain, 125, 2750–2765. First citation in articleCrossrefGoogle Scholar

  • Budson, A. E., Daffner, K. R., Desikan, R. & Schacter, D. L. (2000). When false recognition is unopposed by true recognition: Gist-based memory distortion in Alzheimer’s disease. Neuropsychology, 14(2), 277–278. First citation in articleCrossrefGoogle Scholar

  • Budson, A. E., Wolk, D. A., Chong, H. & Waring, J. D. (2006). Episodic memory in Alzheimer’s disease: Separating response bias from discrimination. Neuropsychologia, 44, 2222–2232. First citation in articleCrossrefGoogle Scholar

  • Deason, R. G., Hussey, E. P., Ally, B. A. & Budson, A. E. (2012). Changes in response bias with different study-test delays: Evidence from young adults, older adults, and patients with Alzheimer’s disease. Neuropsychology, 26, 119–126. First citation in articleCrossrefGoogle Scholar

  • Deason, R. G., Hussey, E. P., Flannery, S. & Ally, B. A. (2015). Preserved conceptual implicit memory for pictures in patients with Alzheimer’s disease. Brain and Cognition, 99, 112–117. First citation in articleCrossrefGoogle Scholar

  • Diana, R. A., Yonelinas, A. P. & Ranganath, C. (2007). Imaging recollection and familiarity in the medial temporal lobe: A three-component model. Trends in Cognitive Sciences, 11, 379–386. First citation in articleCrossrefGoogle Scholar

  • Eichenbaum, H., Yonelinas, A. P. & Ranganath, C. (2007). The medial temporal lobe and recognition memory. Annual Review of Neuroscience, 30, 123–152. First citation in articleCrossrefGoogle Scholar

  • Embree, L. M., Budson, A. E. & Ally, B. A. (2012). Memorial familiarity remains intact for pictures but not for words in patients with amnestic mild cognitive impairment. Neuropsychologia, 50, 2333–2340. First citation in articleCrossrefGoogle Scholar

  • Fowler, K. S., Saling, M. M., Conway, E. L., Semple, J. M. & Louis, W. J. (2002). Paired associate performance in the early detection of DAT. Journal of the International Neuropsychological Society, 8(1), 58–71. First citation in articleCrossrefGoogle Scholar

  • Gainotti, G., Marra, C., Villa, G., Parlato, V. & Chiarotti, F. (1998). Sensitivity and specificity of some neuropsychological markers of Alzheimer disease. Alzheimer Disease and Associated Disorders, 12(3), 152–162. First citation in articleCrossrefGoogle Scholar

  • Gallo, D. A., Shahid, K. R., Olson, M. A., Solomon, T. M., Schacter, D. L. & Budson, A. E. (2006). Overdependence on degraded gist memory in Alzheimer’s disease. Neuropsychology, 20, 625–632. First citation in articleCrossrefGoogle Scholar

  • Gallo, D. A., Sullivan, A. L., Daffner, K. R., Schacter, D. L. & Budson, A. E. (2004). Associative recognition in Alzheimer’s disease: Evidence for impaired recall-to-reject. Neuropsychology, 18, 556–563. First citation in articleCrossrefGoogle Scholar

  • Gold, J. J., Hopkins, R. O. & Squire, L. R. (2006). Single-item memory, associative memory, and the human hippocampus. Learning & Memory, 13, 644–649. First citation in articleCrossrefGoogle Scholar

  • Gurevich, P., Stuke, H., Kastrup, A., Stuke, H. & Hildebrandt, H. (2017). Neuropsychological testing and machine learning distinguish Alzheimer’s disease from other causes for cognitive impairment. Frontiers in Aging Neuroscience, 9, 114. First citation in articleCrossrefGoogle Scholar

  • Hamilton, J. M., Salmon, D. P., Galasko, D., Delis, D. C., Hansen, L. A., Masliah, E. & Thal, L. J. (2004). A comparison of episodic memory deficits in neuropathologically-confirmed Dementia with Lewy bodies and Alzheimer’s disease. Journal of the International Neuropsychological Society, 10, 689–697. First citation in articleCrossrefGoogle Scholar

  • Hildebrandt, H., Haldenwanger, A. & Eling, P. (2009a). False recognition correlates with amyloid-β 1–42 but not with total tau in cerebrospinal fluid of patients with dementia and mild cognitive impairment. Journal of Alzheimer’s Disease, 16, 157–165. First citation in articleCrossrefGoogle Scholar

  • Hildebrandt, H., Haldenwanger, A. & Eling, P. (2009b). False recognition helps to distinguish patients with Alzheimer’s disease and amnestic MCI from patients with other kinds of dementia. Dementia and Geriatric Cognitive Disorders, 28, 159–167. First citation in articleCrossrefGoogle Scholar

  • Kurilla, B. P. & Westerman, D. L. (2008). Processing fluency affects subjective claims of recollection. Memory & Cognition, 36, 82–92. First citation in articleCrossrefGoogle Scholar

  • Lindeboom, J., Schmand, B., Tulner, L., Walstra, G. & Jonker, C. (2002). Visual association test to detect early dementia of the Alzheimer type. Journal of Neurology, Neurosurgery & Psychiatry, 73, 126–133. First citation in articleCrossrefGoogle Scholar

  • Marra, C., Quaranta, D., Zinno, M., Misciagna, S., Bizzarro, A., Masullo, C. & Gainotti, G. (2007). Clusters of cognitive and behavioral disorders clearly distinguish primary progressive aphasia from frontal lobe dementia, and Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 24, 317–326. First citation in articleCrossrefGoogle Scholar

  • Monsch, A. (1997). Neuropsychological examination in evaluating dementia. Praxis, 86, 1340–1342. First citation in articleGoogle Scholar

  • Montaldi, D., Spencer, T. J., Roberts, N. & Mayes, A. R. (2006). The neural system that mediates familiarity memory. Hippocampus, 16, 504–520. First citation in articleCrossrefGoogle Scholar

  • Morris, J. C., Mohs, R. C., Rogers, H., Fillenbaum, G. & Heyman, A. (1988). Consortium to establish a registry for Alzheimer’s disease (CERAD) clinical and neuropsychological assessment of Alzheimer’s disease. Psychopharmacology Bulletin, 24, 641–652. First citation in articleGoogle Scholar

  • Parra, M. A., Abrahams, S., Logie, R. H., Méndez, L. G., Lopera, F. & Della Sala, S. (2010). Visual short-term memory binding deficits in familial Alzheimer’s disease. Brain, 133, 2702–2713. First citation in articleCrossrefGoogle Scholar

  • Pierce, B. H., Sullivan, A. L., Schacter, D. L. & Budson, A. E. (2005). Comparing source-based and gist-based false recognition in aging and Alzheimer’s disease. Neuropsychology, 19, 411–419. First citation in articleCrossrefGoogle Scholar

  • Pierce, B. H., Waring, J. D., Schacter, D. L. & Budson, A. E. (2008). Effects of distinctive encoding on source-based false recognition: Further examination of recall-to-reject processes in aging and Alzheimer disease. Cognitive and Behavioral Neurology, 21, 179–186. First citation in articleCrossrefGoogle Scholar

  • Roediger, H. L. & McDermott, K. B. (1995). Creating false memories: Remembering words not presented in lists. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 803–814. First citation in articleCrossrefGoogle Scholar

  • Saito, M., Nishio, Y., Kanno, S., Uchiyama, M., Hayashi, A., Takagi, M. & Iizuka, O. (2011). Cognitive profile of idiopathic normal pressure hydrocephalus. Dementia and Geriatric Cognitive Disorders Extra, 1, 202–211. First citation in articleCrossrefGoogle Scholar

  • Schmid, N. S., Ehrensperger, M. M., Berres, M., Beck, I. R. & Monsch, A. U. (2014). The extension of the German CERAD neuropsychological assessment battery with tests assessing subcortical, executive and frontal functions improves accuracy in dementia diagnosis. Dementia and Geriatric Cognitive Disorders Extra, 4, 322–334. First citation in articleCrossrefGoogle Scholar

  • Simon, J., Bastin, C., Salmon, E. & Willems, S. (2016). Increasing the salience of fluency cues does not reduce the recognition memory impairment in Alzheimer’s disease! Journal of Neuropsychology, 12, 216–30. First citation in articleCrossrefGoogle Scholar

  • Snodgrass, J. G., Hirshman, E. & Fan, J. (1996). The sensory match effect in recognition memory: Perceptual fluency or episodic trace? Memory & Cognition, 24, 367–383. First citation in articleCrossrefGoogle Scholar

  • Snodgrass, J. G. & Vanderwart, M. (1980). A standardized set of 260 pictures: Norms for name agreement, image agreement, familiarity, and visual complexity. Journal of Experimental Psychology: Human Learning and Memory, 6(2), 174–215. First citation in articleCrossrefGoogle Scholar

  • Sperling, R., Bates, J., Chua, E., Cocchiarella, A., Rentz, D., Rosen, B. & Albert, M. (2003). fMRI studies of associative encoding in young and elderly controls and mild Alzheimer’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 74, 44–50. First citation in articleCrossrefGoogle Scholar

  • van Geldorp, B., Konings, E. P., van Tilborg, I. A. & Kessels, R. P. (2012). Associative working memory and subsequent episodic memory in Alzheimer’s disease. NeuroReport, 23, 119–123. First citation in articleCrossrefGoogle Scholar

  • Vanderploeg, R. D., Yuspeh, R. L. & Schinka, J. A. (2001). Differential episodic and semantic memory performance in Alzheimer’s disease and vascular dementias. Journal of the International Neuropsychological Society, 7, 563–573. First citation in articleCrossrefGoogle Scholar

  • Wechsler, D. (1987). WMS-R: Wechsler memory scale-revised. San Antonio, TX Psychological Corporation. First citation in articleGoogle Scholar

  • Westerman, D. L. (2001). The role of familiarity in item recognition, associative recognition, and plurality recognition on self-paced and speeded tests. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 723–732. First citation in articleCrossrefGoogle Scholar

  • Willems, S. & Van der Linden, M. (2006). Mere exposure effect: A consequence of direct and indirect fluency–preference links. Consciousness and Cognition, 15, 323–341. First citation in articleCrossrefGoogle Scholar

  • Wilson, B. A., Evans, J. J., Emslie, H., Alderman, N. & Burgess, P. (1998). The development of an ecologically valid test for assessing patients with a dysexecutive syndrome. Neuropsychological Rehabilitation, 8, 213–228. doi 10.1080/713755570 First citation in articleCrossrefGoogle Scholar

  • Yonelinas, A. P. (2002). The nature of recollection and familiarity: A review of 30 years of research. Journal of Memory and Language, 46, 441–517. First citation in articleCrossrefGoogle Scholar