Skip to main content
Full-Length Research Report

Facets of Subjective Health Horizons Are Differentially Linked to Brain Volume

Published Online:https://doi.org/10.1024/1662-9647/a000191

Abstract. An active lifestyle including physical exercise and novelty processing is considered to promote brain health. Also, subjective future time perspectives (FTP) are known to shape motivation and goal-directed behavior, with links to objective health, well-being, and cognition. Nevertheless, the links between subjective FTP and brain physiology are largely unknown. We report data from 326 healthy older adults who completed the Subjective Health Horizon Questionnaire (SHH-Q) and structural magnetic resonance imaging (MRI). Voxel-based morphometry analyses revealed associations between (1) the SHH-Q Novelty factor and brain regions of the episodic memory network, and (2) the SHH-Q Body factor and regions contributing to the cortical representation of bodily states. Longitudinal and experimental data are needed to better understand the etiology of these links.

References

  • Addis, D., Wong, A., & Schacter, D. (2007). Remembering the past and imagining the future: Common and distinct neural substrates during event construction and elaboration. Neuropsychologia, 45, 1363–1377. doi 10.1016/j.neuropsychologia.2006.10.016 First citation in articleCrossrefGoogle Scholar

  • Arzy, S., Collette, S., Ionta, S., Fornari, E., & Blanke, O. (2009). Subjective mental time: The functional architecture of projecting the self to past and future. The European Journal of Neuroscience, 30, 2009–2017. doi 10.1111/j.1460-9568.2009.06974.x First citation in articleCrossrefGoogle Scholar

  • Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry: The methods. NeuroImage, 11, 805–821. doi 10.1006/nimg.2000.0582 First citation in articleCrossrefGoogle Scholar

  • Benoit, R., & Schacter, D. (2015). Specifying the core network supporting episodic simulation and episodic memory by activation likelihood estimation. Neuropsychologia, 75, 450–457. doi 10.1016/j.neuropsychologia.2015.06.034 First citation in articleCrossrefGoogle Scholar

  • Bertram, L., Böckenhoff, A., Demuth, I., Düzel, S., Eckardt, R., Li, S.-C. C., ... Steinhagen-Thiessen, E. (2014). Cohort profile: The Berlin Aging Study II (BASE-II). International Journal of Epidemiology, 43, 703–712. doi 10.1093/ije/dyt018 First citation in articleCrossrefGoogle Scholar

  • Brandtstädter, J., & Greve, W. (1994). The aging self: Stabilizing and protective processes. Developmental Review, 52–80. doi 10.1006/drev.1994.1003 First citation in articleCrossrefGoogle Scholar

  • Brandtstädter, J., & Rothermund, K. (2002). The life-course dynamics of goal pursuit and goal adjustment: A two-process framework. Developmental Review, 22, 117–150. doi 10.1006/drev.2001.0539 First citation in articleCrossrefGoogle Scholar

  • Brandtstädter, J., Rothermund, K., Kranz, D., & Kühn, W. (2010). Final decentrations – personal goals, rationality perspectives, and the awareness of life’s finitude. European Psychologist, 15, 152–163. doi 10.1027/1016-9040/a000019 First citation in articleLinkGoogle Scholar

  • Buckner, R., Andrews-Hanna, J., & Schacter, D. (2008). The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38. doi 10.1196/annals.1440.011 First citation in articleCrossrefGoogle Scholar

  • Bulganin, L., & Wittmann, B. (2015). Reward and novelty enhance imagination of future events in a motivational-episodic network. PLoS ONE, 10(11), e0143477. doi 10.1371/journal.pone.0143477 First citation in articleGoogle Scholar

  • Carstensen, L., & Lang, FR. (1996). Future Time Perspective Scale. Stanford, CA: Stanford University Press. First citation in articleGoogle Scholar

  • Craig, A. D. (2002). How do you feel? Interoception: The sense of the physiological condition of the body. Nature Reviews Neuroscience, 3, 655–666. doi 10.1038/nrn894 First citation in articleCrossrefGoogle Scholar

  • Craig, A. D. (2003). Interoception: The sense of the physiological condition of the body. Current Opinion in Neurobiology, 13, 500–505. First citation in articleCrossrefGoogle Scholar

  • Di Lernia, D., Serino, S., & Riva, G. (2017). Pain in the body: Altered interoception in chronic pain conditions. A systematic review. Neuroscience and Biobehavioral Reviews, 71, 328–341. doi 10.1016/j.neubiorev.2016.09.015 First citation in articleCrossrefGoogle Scholar

  • Droit-Volet, S. (2013). Time perception, emotions and mood disorders. Journal of Physiology, 107, 255–264. doi 10.1016/ j.jphysparis.2013.03.005 First citation in articleGoogle Scholar

  • Düzel, E., Bunzeck, N., Guitart-Masip, M., & Düzel, S. (2010). NOvelty-related Motivation of Anticipation and exploration by Dopamine (NOMAD): Implications for healthy aging. Neuroscience and Biobehavioral Reviews, 34, 660–669. doi 10.1016/j.neubiorev. 2009.08.006 First citation in articleCrossrefGoogle Scholar

  • Düzel, S., Voelkle, M. C., Düzel, E., Gerstorf, D., Drewelies, J., Steinhagen-Thiessen, E., ... Lindenberger, U. (2016). The Subjective Health Horizon Questionnaire (SHH-Q): Assessing future time perspectives for facets of an active lifestyle. Gerontology, 62, 345–353. doi 10.1159/000441493 First citation in articleCrossrefGoogle Scholar

  • Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N., Friston, K. J., & Frackowiak, R. S. (2001). A voxel-based morphometric study of aging in 465 normal adult human brains. NeuroImage, 14, 21–36. doi 10.1006/nimg.2001.0786 First citation in articleCrossrefGoogle Scholar

  • Hassabis, D., Kumaran, D., & Maguire, E. (2007). Using imagination to understand the neural basis of episodic memory. The Journal of Neuroscience, 27, 14365–14374. doi 10.1523/jneurosci.4549-07.2007 First citation in articleCrossrefGoogle Scholar

  • Hassabis, D., Kumaran, D., Vann, S., & Maguire, E. (2007). Patients with hippocampal amnesia cannot imagine new experiences. Proceedings of the National Academy of Sciences of the United States of America, 104, 1726–1731. doi 10.1073/pnas.0610561104 First citation in articleCrossrefGoogle Scholar

  • Hassabis, D., & Maguire, E. (2007). Deconstructing episodic memory with construction. Trends in Cognitive Sciences, 11, 299–306. doi 10.1016/j.tics.2007.05.001 First citation in articleCrossrefGoogle Scholar

  • Hayasaka, S., & Nichols, T. E. (2004). Combining voxel intensity and cluster extent with permutation test framework. NeuroImage, 23, 54–63. doi 10.1016/j.neuroimage.2004.04.035 First citation in articleCrossrefGoogle Scholar

  • Heckhausen, J., Wrosch, C., & Schulz, R. (2010). A motivational theory of lifespan development. Psychological Review, 117, 32–60. doi 10.1037/a0017668 First citation in articleCrossrefGoogle Scholar

  • Hertzog, C., Kramer, A., Wilson, R., & Lindenberger, U. (2008). Enrichment effects on adult cognitive development: Can the functional capacity of older adults be preserved and enhanced? Psychological Science in the Public Interest, 9, 1–65. doi 10.1111/j.1539-6053.2009.01034.x First citation in articleCrossrefGoogle Scholar

  • Infurna, F., & Gerstorf, D. (2013). Linking perceived control, physical activity, and biological health to memory change. Psychology and Aging, 28, 1147–1163. doi 10.1037/a0033327 First citation in articleCrossrefGoogle Scholar

  • Kozik, P., Hoppmann, C., & Gerstorf, D. (2014). Future time perspective: Opportunities and limitations are differentially associated with subjective well-being and hair cortisol concentration. Gerontology, 61, 166–174. doi 10.1159/000368716 First citation in articleCrossrefGoogle Scholar

  • Lang, F., & Carstensen, L. (2002). Time counts: Future time perspective, goals, and social relationships. Psychology and Aging, 17, 125–39. First citation in articleCrossrefGoogle Scholar

  • Lindenberger, U. (2014). Human cognitive aging: Corriger la fortune? Science, 346(6209), 572–578. doi 10.1126/science. 1254403 First citation in articleCrossrefGoogle Scholar

  • Lindenberger, U., Wenger, E., & Lövdén, M. (2017). Toward a stronger science of human plasticity. Nature Reviews Neuroscience, 18, 261–262. doi 10.1038/nrn.2017.44 First citation in articleCrossrefGoogle Scholar

  • Lisman, J., & Grace, A. (2005). The hippocampal-VTA loop: Controlling the entry of information into long-term memory. Neuron, 46, 703–713. doi 10.1016/j.neuron.2005.05.002 First citation in articleCrossrefGoogle Scholar

  • Lisman, J., Grace, A., & Duzel, E. (2011). A neo-Hebbian framework for episodic memory: Role of dopamine-dependent late LTP. Trends in Neurosciences, 34, 536–547. doi 10.1016/j.tins.2011.07.006 First citation in articleCrossrefGoogle Scholar

  • Maguire, E. A. (2001). The retrosplenial contribution to human navigation: a review of lesion and neuroimaging findings. Scandinavian Journal of Psychology, 42, 225–238. First citation in articleCrossrefGoogle Scholar

  • Maguire, E. A., Spiers, H. J., Good, C. D., Hartley, T., Frackowiak, R. S., & Burgess, N. (2003). Navigation expertise and the human hippocampus: A structural brain imaging analysis. Hippocampus, 13, 250–259. doi 10.1002/hipo.10087 First citation in articleCrossrefGoogle Scholar

  • Mathalon, D. H., Sullivan, E. V., Rawles, J. M., & Pfefferbaum, A. (1993). Correction for head size in brain-imaging measurements. Psychiatry Research, 50, 121–139. First citation in articleCrossrefGoogle Scholar

  • Mather, M., & Carstensen, L. (2003). Aging and attentional biases for emotional faces. Psychological Science, 14, 409–415. doi 10.1111/1467-9280.01455 First citation in articleCrossrefGoogle Scholar

  • Mather, M., & Carstensen, L. L. (2005). Aging and motivated cognition: The positivity effect in attention and memory. Trends in Cognitive Sciences, 9, 496–502. doi 10.1016/j.tics.2005.08.005 First citation in articleCrossrefGoogle Scholar

  • Mather, M., & Schoeke, A. (2011). Positive outcomes enhance incidental learning for both younger and older adults. Frontiers in Neuroscience, 5, 129. doi 10.3389/fnins.2011.00129 First citation in articleCrossrefGoogle Scholar

  • Muthén, L. K., & Muthén, B. O. (2010). Mplus user’s guide. (6th ed.). Los Angeles: Author. First citation in articleGoogle Scholar

  • Nestor, P., Fryer, T., Smielewski, P., & Hodges, J. (2003). Limbic hypometabolism in Alzheimer’s disease and mild cognitive impairment. Annals of Neurology, 54, 343–351. doi 10.1002/ana.10669 First citation in articleCrossrefGoogle Scholar

  • Nyberg, L., Kim, A. S., Habib, R., Levine, B., & Tulving, E. (2010). Consciousness of subjective time in the brain. Proceedings of the National Academy of Sciences of the United States of America, 107, 22356–22359. doi 10.1073/pnas.1016823108 First citation in articleCrossrefGoogle Scholar

  • Raz, N., & Lindenberger, U. (2013). Life-span plasticity of the brain and cognition: From questions to evidence and back. Neuroscience and Biobehavioral Reviews, 37, 2195–2200. doi 10.1016/j.neubiorev.2013.10.003 First citation in articleCrossrefGoogle Scholar

  • Raz, N., & Rodrigue, K. (2006). Differential aging of the brain: Patterns, cognitive correlates and modifiers. Neuroscience and Biobehavioral Reviews, 30, 730–748. doi 10.1016/j.neubiorev.2006.07.001 First citation in articleCrossrefGoogle Scholar

  • Rowe, J. W., & Kahn, R. L. (2015). Successful aging 20: Conceptual expansions for the 21st century. The Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 70, 593–596. doi 10.1093/geronb/gbv025 First citation in articleCrossrefGoogle Scholar

  • Schacter, D. L., Addis, D. R., & Buckner, R. L. (2008). Episodic simulation of future events: Concepts, data, and applications. Annals of the New York Academy of Sciences, 1124, 39–60. doi 10.1196/annals.1440.001 First citation in articleCrossrefGoogle Scholar

  • Schacter, D. L., Addis, D. R., Hassabis, D., Martin, V. C., Spreng, R. N., & Szpunar, K. K. (2012). The future of memory: Remembering, imagining, and the brain. Neuron, 76, 677–694. doi 10.1016/j.neuron.2012.11.001 First citation in articleCrossrefGoogle Scholar

  • Szpunar, K. K., Watson, J. M., & McDermott, K. B. (2007). Neural substrates of envisioning the future. Proceedings of the National Academy of Sciences of the United States of America, 104, 642–647. doi 10.1073/pnas.0610082104 First citation in articleCrossrefGoogle Scholar

  • Van Praag, H., Kempermann, G., & Gage, F. H. (2000). Neural consequences of environmental enrichment. Nature Reviews Neuroscience, 1, 191–198. doi 10.1038/35044558 First citation in articleCrossrefGoogle Scholar

  • Vann, S., Aggleton, J., & Maguire, E. (2009). What does the retrosplenial cortex do? Nature Reviews Neuroscience, 10, 792–802. doi 10.1038/nrn2733 First citation in articleCrossrefGoogle Scholar

  • Wheeler, M. A., Stuss, D. T., & Tulving, E. (1997). Toward a theory of episodic memory: The frontal lobes and autonoetic consciousness. Psychological Bulletin, 121, 331–354. First citation in articleCrossrefGoogle Scholar

  • Whitwell, J. L., Crum, W. R., Watt, H. C., & Fox, N. C. (2001). Normalization of cerebral volumes by use of intracranial volume: Implications for longitudinal quantitative MR imaging. American Journal of Neuroradiology, 22, 1483–1489. First citation in articleGoogle Scholar

  • Wittmann, B., Bunzeck, N., Dolan, R., & Düzel, E. (2007). Anticipation of novelty recruits reward system and hippocampus while promoting recollection. NeuroImage, 38, 194–202. doi 10.1016/j.neuroimage.2007.06.038 First citation in articleCrossrefGoogle Scholar