Skip to main content
Full-Length Research Report

The Montreal Cognitive Assessment (MoCA) and Brain Structure

Published Online:https://doi.org/10.1024/1662-9647/a000226

Abstract. MoCA is a short cognitive screening tool. We examined the relationship of MoCA performance to white matter integrity, gray matter volume, and surface-based measurements at normal aging in a study in which older and younger cognitively unaffected subjects participated. The sample was split according to MoCA performance, and the data were analyzed using a general linear model (Age × MoCA). We found effects in the expected direction for all methods. The main effects on age and performance as well as interactions occurred for regions associated with aging, pathological and nonpathological. Older low-performing subjects showed structural deficits compared to older high-performing subjects. Therefore, the global index of cognitive status reflects relevant features of the brain structure.

References

  • Abe, O., Yamasue, H., Aoki, S., Suga, M., Yamada, H., Kasai, K., … Ohtomo, K. (2008). Aging in the CNS: Comparison of gray/white matter volume and diffusion tensor data. Neurobiology of Aging, 29, 102–116. https://doi.org/10.1016/j.neurobiolaging.2006.09.003 First citation in articleCrossrefGoogle Scholar

  • Batista, S., Alves, C., d’Almeida, O. C., Afonso, A., Félix-Morais, R., Pereira, J., … Cunha, L. (2017). Disconnection as a mechanism for social cognition impairment in multiple sclerosis. Neurology, 89, 38–45. https://doi.org/10.1212/WNL.0000000000004060 First citation in articleCrossrefGoogle Scholar

  • Battaglia, F., Wang, H. Y., Ghilardi, M. F., Gashi, E., Quartarone, A., Friedman, E., & Nixon, R. A. (2007). Cortical plasticity in Alzheimer’s disease in humans and rodents. Biological Psychiatry, 62(12), 1405–1412. https://doi.org/10.1016/j.biopsych.2007.02.027 First citation in articleCrossrefGoogle Scholar

  • Bauer, E., Sammer, G., & Toepper, M. (2015). Trying to put the puzzle together: Age and performance level modulate the neural response to increasing task load within left rostral prefrontal cortex. BioMed Research International, 415458. https://doi.org/10.1155/2015/415458 First citation in articleGoogle Scholar

  • Bennett, I. J., Madden, D. J., Vaidya, C. J., Howard, D. V., & Howard, J. H. Jr (2010). Age-related differences in multiple measures of white matter integrity: A diffusion tensor imaging study of healthy aging. Human Brain Mapping, 31, 378–390. https://doi.org/10.1002/hbm.20872 First citation in articleGoogle Scholar

  • Brugulat-Serrat, A., Salvadó, G., Sudre, C. H., Grau-Rivera, O., Suárez-Calvet, M., Falcon, C., … ALFA Study. (2019). Patterns of white matter hyperintensities associated with cognition in middle-aged cognitively healthy individuals. Brain Imaging and Behavior. Advance online publication. https://doi.org/10.1007/s11682-019-00151-2 First citation in articleCrossrefGoogle Scholar

  • Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychology and Aging, 17, 85–100. https://doi.org/10.1037/0882-7974.17.1.85 First citation in articleCrossrefGoogle Scholar

  • Cardenas, V. A., Chao, L. L., Studholme, C., Yaffe, K., Miller, B. L., Madison, C., … Weiner, M. W. (2011). Brain atrophy associated with baseline and longitudinal measures of cognition. Neurobiology of Aging, 32, 572–580. https://doi.org/10.1016/j.neurobiolaging.2009.04.011 First citation in articleCrossrefGoogle Scholar

  • Catani, M., & Thiebaut de Schotten, M. (2008). A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex, 44, 1105–1132. https://doi.org/10.1016/j.cortex.2008.05.004 First citation in articleCrossrefGoogle Scholar

  • De Leon, M. J., Desanti, S., Zinkowski, R., Mehta, P. D., Pratico, D., Segal, S., … Rusinek, H. (2004). MRI and CSF studies in the early diagnosis of Alzheimer’s disease. Journal of Internal Medicine, 256, 205–223. https://doi.org/10.1111/j.1365-2796.2004.01381.x First citation in articleCrossrefGoogle Scholar

  • Del Brutto, O. H., Mera, R. M., Zambrano, M., Soriano, F., & Lama, J. (2015). Global cortical atrophy (GCA) associates with worse performance in the Montreal Cognitive Assessment (MoCA): A population-based study in community-dwelling elders living in rural Ecuador. Archives of Gerontology and Geriatrics, 60, 206–209. https://doi.org/10.1016/j.archger.2014.09.010 First citation in articleCrossrefGoogle Scholar

  • Durant, J., Leger, G. C., Banks, S. J., & Miller, J. B. (2016). Relationship between the activities of daily living questionnaire and the Montreal Cognitive Assessment, Alzheimer’s & Dementia. Diagnosis, Assessment & Disease Monitoring, 4, 43–46. https://doi.org/10.1016/j.dadm.2016.06.001 First citation in articleCrossrefGoogle Scholar

  • Ewers, M., Frisoni, G. B., Teipel, S. J., Grinberg, L. T. Jr., Amaro, E., Heinsen, H., … Hampel, H. (2011). Staging Alzheimer’s disease progression with multimodality neuroimaging. Progress in Neurobiology, 95, 535–546. https://doi.org/10.1016/j.pneurobio.2011.06.004 First citation in articleCrossrefGoogle Scholar

  • Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191. First citation in articleCrossrefGoogle Scholar

  • Feldman, D. E. (2009). Synaptic mechanisms for plasticity in neocortex. Annual Review of Neuroscience, 32, 33–55. https://doi.org/10.1146/annurev.neuro.051508.135516 First citation in articleCrossrefGoogle Scholar

  • Ferreira, L. K., Diniz, B. S., Forlenza, O. V., Busatto, G. F., & Zanetti, M. V. (2011). Neurostructural predictors of Alzheimer’s disease: A meta-analysis of VBM studies. Neurobiology of Aging, 32, 1733–1741. https://doi.org/10.1016/j.neurobiolaging.2009.11.008 First citation in articleCrossrefGoogle Scholar

  • Fjell, A. M., Westlye, L. T., Espeseth, T., Reinvang, I., Dale, A. M., Holland, D., & Walhovd, K. B. (2010). Cortical gray matter atrophy in healthy aging cannot be explained by undetected incipient cognitive disorders: A comment on Burgmans et al. (2009). Neuropsychology, 24, 258–266. https://doi.org/10.1037/a0018827 First citation in articleCrossrefGoogle Scholar

  • Folstein, M., Folstein, S., & McHugh, P. (1975). “Mini-mental state.” A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189–198. First citation in articleCrossrefGoogle Scholar

  • Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N., Friston, K. J., & Frackowiak, R. S. (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage, 14(1 Pt 1), 21–36. https://doi.org/10.1006/nimg.2001.0786 First citation in articleCrossrefGoogle Scholar

  • Gunning-Dixon, F. M., Brickman, A. M., Cheng, J. C., & Alexopoulos, G. S. (2009). Aging of cerebral white matter: A review of MRI findings faith. International Journal of Geriatric Psychiatry, 24, 109–117. https://doi.org/10.1002/gps.2087.Aging First citation in articleCrossrefGoogle Scholar

  • Jolly, T. A. D., Cooper, P. S., Wan Ahmadul Badwi, S. A., Phillips, N. A., Rennie, J. L., Levi, C. R., … Karayanidis, F. (2016). Microstructural white matter changes mediate age-related cognitive decline on the Montreal Cognitive Assessment (MoCA). Psychophysiology, 53, 258–267. https://doi.org/10.1111/psyp.12565 First citation in articleCrossrefGoogle Scholar

  • Katzman, R., Terry, R., DeTeresa, R., Brown, T., Davies, P., Fuld, P., … Peck, A. (1988). Clinical, pathological, and neurochemical changes in dementia: A subgroup with preserved mental status and numerous neocortical plaques. Annals of Neurology, 23, 138–144. https://doi.org/10.1002/ana.410230206 First citation in articleCrossrefGoogle Scholar

  • Kaup, A., Mirzakhanian, H., Jeste, D., & Eyler, L. (2011). A review of the brain structure correlates of successful cognitive aging. Journal of Neuropsychiatry and Clinical Neurosciences, 23, 1–26. https://doi.org/10.1176/appi.neuropsych.23.1.6.A First citation in articleCrossrefGoogle Scholar

  • Kraus, M. F., Susmaras, T., Caughlin, B. P., Walker, C. J., Sweeney, J. A., & Little, D. M. (2007). White matter integrity and cognition in chronic traumatic brain injury: A diffusion tensor imaging study. Brain, 130, 2508–2519. https://doi.org/10.1093/brain/awm216 First citation in articleCrossrefGoogle Scholar

  • Kynast, J., Lampe, L., Luck, T., Frisch, S., Arelin, K., Hoffmann, K. T., … Schroeter, M. L. (2018). White matter hyperintensities associated with small vessel disease impair social cognition beside attention and memory. Journal of Cerebral Blood Flow and Metabolism, 38, 996–1009. https://doi.org/10.1177/0271678X17719380 First citation in articleCrossrefGoogle Scholar

  • Larner, A. J. (2012). Screening utility of the Montreal Cognitive Assessment (MoCA): In place of–or as well as–the MMSE? International Psychogeriatrics/IPA, 24, 391–396. https://doi.org/10.1017/S1041610211001839 First citation in articleCrossrefGoogle Scholar

  • Lezak, M., Howieson, D., Bigler, E., & Tranel, D. (2012). Neuropsychological assessment. New York: Oxford University Press. First citation in articleGoogle Scholar

  • Mason, O., Claridge, G., & Jackson, M. (1995). New scales for the assessment of schizotypy. Personality and Individual Differences, 18, 7–13. First citation in articleCrossrefGoogle Scholar

  • Mayo, C. D., Mazerolle, E. L., Ritchie, L., Fisk, J. D., & Gawryluk, J. R. (2017). Longitudinal changes in microstructural white matter metrics in Alzheimer’s disease. NeuroImage: Clinical, 13, 330–338. https://doi.org/10.1016/j.nicl.2016.12.012 First citation in articleCrossrefGoogle Scholar

  • Meng, J. Z., Guo, L. W., Cheng, H., Chen, Y. J., Fang, L., Qi, M., … Hong, X. N. (2012). Correlation between cognitive function and the association fibers in patients with Alzheimer’s disease using diffusion tensor imaging. Journal of Clinical Neuroscience, 19, 1659–1663. https://doi.org/10.1016/j.jocn.2011.12.031 First citation in articleCrossrefGoogle Scholar

  • Menon, V. (2015). Salience network. In A. W. TogaEd., Brain mapping: An encyclopedic reference (Vol. 2, pp. 597–611). Amsterdam: Academic Press/Elsevier. https://doi.org/10.1016/B978-0-12-397025-1.00052-X First citation in articleGoogle Scholar

  • Mori, S., Wakana, S., Nagae-Poetscher, L. M., & van Zijl, P. C. (2005). MRI atlas of human white matter. Amsterdam, The Netherlands: Elsevier. First citation in articleGoogle Scholar

  • Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., … Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53, 695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x First citation in articleCrossrefGoogle Scholar

  • Paul, R., Lane, E. M., Tate, D. F., Heaps, J., Romo, D. M., Akbudak, E., … Conturo, T. E. (2011). Neuroimaging signatures and cognitive correlates of the montreal cognitive assessment screen in a nonclinical elderly sample. Archives of Clinical Neuropsychology, 26, 454–460. https://doi.org/10.1093/arclin/acr017 First citation in articleCrossrefGoogle Scholar

  • Petermann, F. (2012). Wechsler Adult Intelligence Scale–Fourth edition (WAIS-IV) (German Version). Frankfurt, Germany: Pearson Assessment. First citation in articleGoogle Scholar

  • Prins, N. D., & Scheltens, P. (2015). White matter hyperintensities, cognitive impairment and dementia: An update. Nature Reviews Neurology, 11, 157–165. https://doi.org/10.1038/nrneurol.2015.10 First citation in articleCrossrefGoogle Scholar

  • Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., … Acker, J. D. (2005). Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cerebral Cortex, 15, 1676–1689. https://doi.org/10.1093/cercor/bhi044 First citation in articleCrossrefGoogle Scholar

  • Reitan, R. M. (1958). Validity of the Trail Making Test as an indicator of organic brain damage. Perceptual and Motor Skills, 8, 271–276. https://doi.org/10.2466/pms.1958.8.3.271 First citation in articleCrossrefGoogle Scholar

  • Rémy, F., Vayssière, N., Saint-Aubert, L., Barbeau, E., & Pariente, J. (2015). White matter disruption at the prodromal stage of Alzheimer’s disease: Relationships with hippocampal atrophy and episodic memory performance. NeuroImage: Clinical, 7, 482–492. https://doi.org/10.1016/j.nicl.2015.01.014 First citation in articleCrossrefGoogle Scholar

  • Reuter-Lorenz, P. A., & Cappell, K. A. (2008). Neurocognitive ageing and the compensation hypothesis. Current Directions in Psychological Science, 17, 177–182. https://doi.org/10.1111/j.1467-8721.2008.00570.x First citation in articleCrossrefGoogle Scholar

  • Sala, G., Inagaki, H., Ishioka, Y. L., Masui, Y., Nakagawa, T., Ikebe, K., … Gondo, Y. (2019). Psychometric properties of the Montreal Cognitive Assessment (MoCA): A comprehensive investigation. https://doi.org/10.31234/osf.io/7xyuv First citation in articleGoogle Scholar

  • Salat, D. H., Tuch, D. S., van der Kouwe, A. J., Greve, D. N., Pappu, V., Lee, S. Y., … Rosas, H. D. (2010). White matter pathology isolates the hippocampal formation in Alzheimer’s disease. Neurobiology of Aging, 31, 244–256. https://doi.org/10.1016/j.neurobiolaging.2008.03.013 First citation in articleCrossrefGoogle Scholar

  • Sexton, C. E., Mackay, C. E., Lonie, J. A., Bastin, M. E., Terrière, E., O’Carroll, R. E., & Ebmeier, K. P. (2010). MRI correlates of episodic memory in Alzheimer’s disease, mild cognitive impairment, and healthy aging. Psychiatry Research – Neuroimaging, 184, 57–62. https://doi.org/10.1016/j.pscychresns.2010.07.005 First citation in articleCrossrefGoogle Scholar

  • Shao, C. Y., Mirra, S. S., Sait, H. B. R., Sacktor, T. C., & Sigurdsson, E. M. (2011). Postsynaptic degeneration as revealed by PSD-95 reduction occurs after advanced Aβ and tau pathology in transgenic mouse models of Alzheimer’s disease. Acta Neuropathologica, 122, 285–292. https://doi.org/10.1007/s00401-011-0843-x First citation in articleCrossrefGoogle Scholar

  • Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17, 143–155. https://doi.org/10.1002/hbm.10062 First citation in articleCrossrefGoogle Scholar

  • Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., … Behrens, T. E. (2006). Tract-based spatial statistics: Voxelwise analysis of multisubject diffusion data. NeuroImage, 31, 1487–1505. https://doi.org/10.1016/j.neuroimage.2006.02.024 First citation in articleCrossrefGoogle Scholar

  • Stebbins, G. T., & Murphy, C. M. (2009). Diffusion tensor imaging in Alzheimer’s disease and mild cognitive impairment. Behavioural Neurology, 21, 39–49. https://doi.org/10.3233/BEN-2009-0234 First citation in articleCrossrefGoogle Scholar

  • Stern, Y. (2006). Cognitive reserve and Alzheimer disease. Alzheimer Disease and Associated Disorders, 20(3, Suppl 2), S69–S74. https://doi.org/10.1097/00002093-200607001-00010 First citation in articleCrossrefGoogle Scholar

  • Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer’s disease. The Lancet: Neurology, 11, 1006–1012. https://doi.org/10.1016/S1474-4422(12)70191-6 First citation in articleCrossrefGoogle Scholar

  • Storsve, A. B., Fjell, A. M., Tamnes, C. K., Westlye, L. T., Overbye, K., Aasland, H. W., & Walhovd, K. B. (2014). Differential longitudinal changes in cortical thickness, surface area and volume across the adult lifespan: Regions of accelerating and decelerating change. Journal of Neuroscience, 34, 8488–8498. https://doi.org/10.1523/JNEUROSCI.0391-14.2014 First citation in articleCrossrefGoogle Scholar

  • Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662. First citation in articleCrossrefGoogle Scholar

  • Tisserand, D. J., van Boxtel, M. P. J., Pruessner, J. C., Hofman, P., Evans, A. C., & Jolles, J. (2004). A voxel-based morphometric study to determine individual differences in gray matter density associated with age and cognitive change over time. Cerebral Cortex, 14, 966–973. https://doi.org/10.1093/cercor/bhh057 First citation in articleCrossrefGoogle Scholar

  • Toepper, M. (2017). Dissociating normal aging from Alzheimer’s disease: A view from cognitive neuroscience. Journal of Alzheimer’s Disease, 57, 1–22. https://doi.org/10.3233/JAD-161099 First citation in articleCrossrefGoogle Scholar

  • Toglia, J., Askin, G., Gerber, L. M., Taub, M. C., Mastrogiovanni, A. R., & O’Dell, M. W. (2017). Association between 2 measures of cognitive instrumental activities of daily living and their relation to the Montreal Cognitive Assessment in persons with stroke. Archives of Physical Medicine and Rehabilitation, 98, 2280–2287. https://doi.org/10.1016/j.apmr.2017.04.007 First citation in articleCrossrefGoogle Scholar

  • Uddin, L. Q., Yeo, B. T. T., & Spreng, R. N. (2019). Towards a universal taxonomy of macro-scale functional human brain networks. Brain Topography, 32, 926–942. https://doi.org/10.1007/s10548-019-00744-6 First citation in articleCrossrefGoogle Scholar

  • Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect, 2, 125–141. https://doi.org/10.1089/brain.2012.0073 First citation in articleCrossrefGoogle Scholar

  • Yang, J., Pan, P., Song, W., Huang, R., Li, J., Chen, K., … Shang, H. (2012). Voxelwise meta-analysis of gray matter anomalies in Alzheimer’s disease and mild cognitive impairment using anatomic likelihood estimation. Journal of the Neurological Sciences, 316, 21–29. https://doi.org/10.1016/j.jns.2012.02.010 First citation in articleCrossrefGoogle Scholar