Skip to main content
Published Online:https://doi.org/10.1024/2235-0977/a000044

Laut ICD-10 und DSM-IV-TR muss für die Diagnose einer Dyskalkulie eine Diskrepanz zwischen der allgemeinen kognitiven Leistungsfähigkeit und der tatsächlichen oder vorhergesagten Leistung in einem Mathematiktest vorliegen. Diese Definition impliziert, dass sich rechenschwache Kinder, die diese Diskrepanz aufweisen, von rechenschwachen Kindern ohne Erfüllung des Diskrepanzkriteriums unterscheiden. Die vorliegende Arbeit hatte zum Ziel, mögliche Unterschiede zwischen dyskalkulischen und rechenschwachen Kindern sowie einer Kontrollgruppe in der basisnumerischen Verarbeitung zu prüfen. Zur Identifikation einer Dyskalkulie bzw. Rechenschwäche wurden entweder (a) ein Testverfahren mit basisnumerischem Schwerpunkt (ZAREKI-R) oder (b) Tests zur Erfassung von Rechenfertigkeiten (ZAREKI-R Kopfrechnen und Textaufgaben, HRT 1 – 4 Addition und Subtraktion, WISC-IV rechnerisches Denken) verwendet. Insgesamt bearbeiteten 68 Kinder (Dyskalkulie: Na = 27/Nb = 11, Rechenschwäche: Na = 21/Nb = 18, Kontrollgruppe: Na = 20/Nb = 39) eine Batterie von basisnumerischen Aufgaben: Simultanerfassung, Abzählen, Mengenvergleich, Transkodieren, Number sets und Zahlenstrahl (0 – 100). Zusätzlich wurde die Arbeitsgedächtniskapazität mit einer visuell-räumlichen Aufgabe (Matrixspanne) überprüft. Laut Klassifikation nach ZAREKI-R unterschieden sich rechenschwache und dyskalkulische Kinder in fast allen basisnumerischen Aufgaben klar von der Kontrollgruppe, jedoch nicht untereinander. Bei Klassifikation nach Rechenfertigkeiten konnten rechenschwache und dyskalkulische Kinder ebenfalls nicht differenziert werden, allerdings unterschieden sich nur rechenschwache Kinder von der Kontrollgruppe (bei den Aufgaben Simultanerfassung, Abzählen, symbolischer Mengenvergleich, Transkodieren, Zahlenstrahl). Die Befunde werden vor dem Hintergrund der Verwendung basisnumerischer Fertigkeiten für die Diagnose und Therapie von Dyskalkulie diskutiert.


Dyscalculia vs. Severe Math Difficulties: Basic Numerical Capacities in Elementary School

Background: The current international classification systems ICD-10 and DSM-IV show a large conceptual overlap in their criteria for defining dyscalculia: Firstly, a child's score in a standardized mathematics assessment should fall below a pre-specified percentile rank cutoff (usually 10 %). Secondly, intelligence is required to be in the normal range (i. e., IQ ≥ 70 or 80). And thirdly, a substantial discrepancy between the mathematics and intelligence standard scores should be observed. In this paper, we will define children that conform to all three criteria as having developmental dyscalculia (DD), whereas children who fulfill only the first two criteria are defined to show severe math difficulties (MD).

This discrepancy definition of DD, along with similar definitions for other learning disorders, has long been criticized in the scientific literature on methodological, conceptual, and ethical grounds. Further, at least for dyslexia, a substantial body of research has been published, showing that no reliable differences between high-IQ and low-IQ poor readers can be found on relevant core markers (e. g., word recognition) and that no different treatments are required for high-IQ and low-IQ readers (Stanovich, 2005). However, there are still only few studies comparing DD and MD children. One of the few studies (Gonzalez & Espinel, 2002) reported no substantial differences between these groups with respect to solving algebra word problems and using solution strategies. Ehlert et al. (2012), using a criterion-based test, did not find any differences in mathematical concept comprehension between DD and MD children.

Aims: The main goal of this study was to compare DD and MD children with each other and with an unimpaired control group on a battery of tasks tapping basic numerical capacities. The tasks were chosen such that they broadly covered key aspects of numerical cognition, i. e., dot enumeration (subitizing and counting), number and magnitude comparison, transcoding, number sets and number line. A second goal pertained to a comparison of MD/DD classification strategies. The first strategy (A) used a well-established psychometric test that broadly covered basic numerical capacities and, to a lesser degree, arithmetic ability to identify DD/MD. As a second strategy (B), we used arithmetic ability exclusively to identify children with MD/DD.

Methods: Overall, N = 68 children participated in this study. The following criteria for DD were used: IQ ≥ 80 (based on the WISC-IV perceptual reasoning index and vocabulary; Petermann & Petermann, 2011), standard reading score ≥ 80 (SLS 1 – 4; Mayringer & Wimmer, 2003), standard math score ≤ 80 (strategy A: ZAREKI-R; von Aster, Weinhold Zulauf & Horn, 2006; strategy B: mean of five arithmetic subtests, two from ZAREKI-R [mental calculation, word problems]; two from HRT 1 – 4 [addition, subtraction], Haffner, Baro, Parzer, & Resch, 2005; and the arithmetic subtest from WISC-IC), discrepancy between IQ and standardized math score > 1.5 standard deviations. For MD, the only difference was that the discrepancy between IQ and math assessment was required to not exceed 1.5 standard deviations, while all other criteria applied. Children in the control group conformed to the following criteria: IQ ≥ 80, standard math score ≥ 90, standard reading score ≥ 80.

For strategy A (B), these criteria resulted in a selection of N = 27 (11) children with DD, N = 21 (18) children with MD, and N = 20 (39) children in the control group. All basic numerical capacities were administered on a computer with headphones. The first task was dot enumeration, where children had subitize one to three dots (6 items) or count four to nine dots (12 items) as fast as possible. The second task assessed symbolic magnitude comparison, where children had to indicate the larger of two single-digit numbers (24 items). Next, a mixed magnitude comparison task was administered in which the larger magnitude (single digit or number of dots) had to be selected (24 items). A subsequent transcoding task required children to type the numbers they had just heard (8 items). A discrete trial variant of the number set task (Geary et al., 2009) was presented next, in which children were supposed to quickly judge whether a target number on top of the screen corresponded to a number set shown below (140 items, speed test). Then, a number line task (Booth & Siegler, 2006) ranging from 0 – 100 was administered in which children had to indicate where a number shown on top of the screen was located on the number line (23 items). Two additional tasks were administered, a binary-choice reaction time task (20 items) to assess processing speed and a visual matrix span task (up to 16 items) to assess visuo-spatial working memory.

Results: Computing multiple ANOVAs with post-hoc comparisons, for classification strategy A we found statistically significant differences between the control group and MD on all subtests except three (reaction time, subitizing, mixed magnitude comparison), with a very similar result for the comparison of DD and the control group (in this comparison, however, the difference for counting was insignificant, whereas the difference for mixed magnitude comparison was substantial). We were unable to find any differences between DD and MD children. For strategy B, a different picture emerged; here, only MD children differed from the control group on five subtests (subitizing, counting, symbolic magnitude comparison, transcoding, number line), with MD and DD groups not showing any differences either. Next, we took a closer look at some tasks, and found two key results of interest. First, although mostly, reliable main effects of group (MD vs. control/DD vs. control) could be found for subitizing, counting, and symbolic magnitude comparison, we did not find any interaction effects between task properties (e. g., numerical distance) and group. This provides evidence for the fact that MD or DD children do not show qualitatively different cognitive patterns in counting, subitizing, or magnitude comparison. Second, when analyzing the number line task using three different regression models (linear, logarithmic, proportional judgement model; Spence, 1990), we found that even though linear regression was the best-fitting model overall, data from a substantial proportion of MD and DD children could be fit best using a logarithmic model, even up to the third grade.

Discussion: This study was conducted to investigate differences in basic numerical capacities between DD and MD children in order to evaluate the discrepancy criterion in defining this learning disorder. When using a classification strategy based on a broad sampling of basic numerical capacities, reliable differences between the control group and DD/MD groups was found, although the groups did not substantially differ. When using arithmetic tests only for classification, a much more diverse picture emerged, resulting in more severe problems in children with MD, whereas children with DD could not be separated from the control group on statistical grounds. We assume that these differences can at least partly be explained by the low classification reliability using a double discrepancy criterion (Francis et al., 2005). However, in order to screen for DD/MD and to design appropriate interventions, basic numerical capacities need to be a core part of assessment. Future studies are required that investigate whether different interventions are needed for DD and MD children, thus enabling the evaluation of the discrepancy criterion from an additional point of view.

Literatur

  • Andersson, U. , Lyxell, B. (2007). Working memory deficit in children with mathematical difficulties: A general or specific deficit? Journal of Experimental Child Psychology, 96, 197 – 228. First citation in articleCrossrefGoogle Scholar

  • Andersson, U. , Östergren, R. (2012). Number magnitude processing and basic cognitive functions in children with mathematical learning disabilities. Learning and Individual Differences, 22, 701 – 714. First citation in articleCrossrefGoogle Scholar

  • Ashcraft, M. H. (2002). Math anxiety: Personal, educational, and cognitive consequences. Current Directions in Psychological Science, 11, 181 – 185. First citation in articleCrossrefGoogle Scholar

  • Ashkenazi, S. , Mark-Zigdon, N. , Henik, A. (2013). Do subitizing deficits in developmental dyscalculia involve pattern recognition weakness? Developmental Science, 16, 35 – 46. First citation in articleCrossrefGoogle Scholar

  • Booth, J. L. , Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 41, 189 – 201. First citation in articleCrossrefGoogle Scholar

  • Brickenkamp, R. , Schmidt-Atzert, L. , Liepmann, D. (2010). Test d2 – Revision. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Butterworth, B. (2003). Dyscalculia screener. London: nferNelson. First citation in articleGoogle Scholar

  • Butterworth, B. (2005). Developmental dyscalculia. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 455 – 467). New York: Psychology Press. First citation in articleGoogle Scholar

  • Butterworth, B. (2012). Low numeracy and dyscalculia: Cognitive theory, neuroscience, and intervention. British Journal of Educational Psychology Monograph Series II, 8, 29 – 43. First citation in articleGoogle Scholar

  • Büttner, G. , Hasselhorn, M. (2011). Learning disabilities: Debates on definitions, causes, subtypes, and responses. International Journal of Disability, Development and Education, 58, 75 – 87. First citation in articleCrossrefGoogle Scholar

  • Case, R. , Okamoto, Y. (1996). The role of conceptual structures in the development of children's thought. Monographs of the Society for Research in Child Development, 61 (Serial Nr. 246). First citation in articleCrossrefGoogle Scholar

  • Cahan, S. C. , Fono, D. , Nirel, R. (2012). The regression-based definition of learning disability: A critical appraisal. Journal of Learning Disabilities, 45, 170 – 178. First citation in articleCrossrefGoogle Scholar

  • Cipolotti, L. , Butterworth, B. (1995). Toward a multiroute model of number processing: Impaired number transcoding with preserved calculation skills. Journal of Experimental Psychology: General, 124, 375 – 390. First citation in articleCrossrefGoogle Scholar

  • De Smedt, B. , Gilmore, C. K. (2011). Defective number module or impaired access? Numerical magnitude processing in first graders with mathematical difficulties. Journal of Experimental Child Psychology, 108, 278 – 292. First citation in articleCrossrefGoogle Scholar

  • Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1 – 42. First citation in articleCrossrefGoogle Scholar

  • Dehaene, S. (1997). The number sense. Oxford: Oxford University Press. First citation in articleGoogle Scholar

  • Dennis, M. , Francis, D. J. , Cirino, P. T. , Schachar, R. , Barnes, M. A. , Fletcher, J. M. (2009). Why IQ is not a covariate in cognitive studies of neurodevelopmental disorders. Journal of the International Neuropsychological Society, 15, 331 – 343. First citation in articleCrossrefGoogle Scholar

  • Desoete, A. , Ceulemans, A. , Roeyers, H. , Huylebroeck, A. (2009). Subitizing and counting as possible screening variables for learning disabilities in mathematics education or learning? Educational Research Review, 4, 55 – 68. First citation in articleCrossrefGoogle Scholar

  • Deutsche Gesellschaft für Kinder- und Jugendpsychiatrie und Psychotherapie (DGKJP) et al. (Hrsg.) (2007). Leitlinien zur Diagnostik und Therapie von psychischen Störungen im Säuglings-, Kindes- und Jugendalter (3. Aufl.). Köln: Deutscher Ärzte-Verlag. First citation in articleGoogle Scholar

  • Dilling, H. , Mombour, W. , Schmidt, M. H. (2011). Internationale Klassifikation psychischer Störungen. ICD-10 Kapitel V (F). Diagnostische Kriterien für Forschung und Praxis. Bern: Huber. First citation in articleGoogle Scholar

  • Dowker, A. D. , Sigley, G. (2010). Targeted interventions for children with arithmetical difficulties. British Journal of Educational Pyschology Monograph Series II, 7, 65 – 81. First citation in articleGoogle Scholar

  • Ehlert, A. , Schroeders, U. , Stratmann, A. (2012). Kritik am Diskrepanzkriterium in der Diagnostik von Legasthenie und Dyskalkulie. Lernen und Lernstörungen, 1, 169 – 184. First citation in articleLinkGoogle Scholar

  • Ennemoser, M. , Krajewski, K. , Schmidt, S. (2011). Entwicklung und Bedeutung von Mengen-Zahlen-Kompetenzen und eines basalen Konventions- und Regelwissens in den Klassen 5 bis 9. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 43, 228 – 242. First citation in articleLinkGoogle Scholar

  • Feigenson, L. , Dehaene, S. , Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8, 307 – 314. First citation in articleCrossrefGoogle Scholar

  • Fischer, B. , Köngeter, A. , Hartnegg, K. (2008). Effects of daily practice on subitizing, visual counting, and basic arithmetic skills. Optometry & Vision Development, 39, 30 – 34. First citation in articleGoogle Scholar

  • Fletcher, J. M. , Shaywitz, S. E. , Shankweiler, D. P. , Katz, L. , Liberman, I. Y. , Stuebing, K. et al. (1994). Cognitive profiles of reading disability: Comparisons of discrepancy and low achievement definitions. Journal of Educational Psychology, 85, 1 – 18. First citation in articleGoogle Scholar

  • Francis, D. J. , Fletcher, J. M. , Stuebing, K. K. , Lyon, G. R. , Shaywitz, B. A. , Shaywitz, S. E. (2005). Psychometric approaches to the identification of LD: IQ and achievement scores are not sufficient. Journal of Learning Disabilities, 38, 98 – 108. First citation in articleCrossrefGoogle Scholar

  • Fritz, A. , Ricken, G. (2008). Rechenschwäche. München: Reinhardt. First citation in articleCrossrefGoogle Scholar

  • Games, P. A. , Howell, J. F. (1976). Pairwise multiple comparison procedures with unequal N's and/or variances: A Monte Carlo study. Journal of Educational and Behavioral Statistics, 1, 113 – 125. First citation in articleCrossrefGoogle Scholar

  • Gaupp, N. , Zoelch, C. , Schumann-Hengsteler, R. (2004). Defizite numerischer Basiskompetenzen bei rechenschwachen Kindern der 3. und 4. Klassenstufe. Zeitschrift für Pädagogische Psychologie, 18, 31 – 42. First citation in articleLinkGoogle Scholar

  • Geary, D. C. , Bailey, D. H. , Hoard, M. K. (2009). Predicting mathematical achievement and mathematical learning disability with a simple screening tool: The number sets test. Journal of Psychoeducational Assessment, 27, 265 – 279. First citation in articleCrossrefGoogle Scholar

  • Geary, D. C. , Hoard, M. K. , Nugent, L. , Byrd-Craven, J. (2008). Development of number line representations in children with mathematical learning disability. Developmental Neuropsychology, 33, 277 – 299. First citation in articleCrossrefGoogle Scholar

  • Gebuis, T. , Reynvoet, B. (2012). The interplay between nonsymbolic number and its continuous visual properties. Journal of Experimental Psychology: General, 141, 642 – 648. First citation in articleCrossrefGoogle Scholar

  • Gelman, R. , Gallistel, C. R. (1978). The child's understanding of number. Cambridge, MA: Harvard University Press. First citation in articleGoogle Scholar

  • Gonzalez, J. E. J. , Espinel, A. I. G. (1999). Is IQ-achievement discrepancy relevant in the definition of arithmetic learning disabilities? Learning Disability Quarterly, 22, 291 – 301. First citation in articleCrossrefGoogle Scholar

  • Gonzalez, J. E. J. , Espinel, A. I. G. (2002). Strategy choice in solving arithmetic word problems: Are there differences between students with learning disabilities, G-V poor performance and typical achievement students? Learning Disability Quarterly, 25, 113 – 122. First citation in articleCrossrefGoogle Scholar

  • Haffner, J. , Baro, K. , Parzer, P. , Resch, F. (2005). Heidelberger Rechentest (HRT 1 – 4). Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Huberty, C. J. , Morris, J. D. (1989). Multivariate analysis versus multiple univariate analysis. Psychological Bulletin, 105, 302 – 308. First citation in articleCrossrefGoogle Scholar

  • Ise, E. , Dolle, K. , Pixner, S. , Schulte-Körne, G. (2012). Effektive Förderung rechenschwacher Kinder: Eine Meta-Analyse. Kindheit und Entwicklung, 21, 181 – 192. First citation in articleLinkGoogle Scholar

  • Iuculano, T. , Tang, J. , Hall, C. W. B. , Butterworth, B. (2008). Core information processing deficits in developmental dyscalculia and low numeracy. Developmental Science, 11, 669 – 680. First citation in articleCrossrefGoogle Scholar

  • Koontz, K. L. , Berch, D. B. (1996). Identifying simple numerical stimuli: Processing inefficiencies exhibited by arithmetic learning disabled children. Mathematical Cognition, 2, 1 – 23. First citation in articleCrossrefGoogle Scholar

  • Krajewski, K. , Schneider, W. (2009). Early development of quantity to number-word linkage as a precursor of mathematical school achievement and mathematical difficulties: Findings from a four-year longitudinal study. Learning and Instruction, 19, 513 – 526. First citation in articleCrossrefGoogle Scholar

  • Kucian, K. , Grond, U. , Rotzer, S. , Henzi, B. , Schönmann, C. , Plangger, F. et al. (2011). Mental number line training in children with developmental dyscalculia. NeuroImage, 57, 782 – 795. First citation in articleCrossrefGoogle Scholar

  • Landerl, K. , Bevan, A. , Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8 – 9-year-old students. Cognition, 93, 99 – 125. First citation in articleCrossrefGoogle Scholar

  • Landerl, K. , Fussenegger, B. , Moll, K. , Willburger, E. (2009). Dyslexia and dyscalculia: Two learning disorders with different cognitive profiles. Journal of Experimental Child Psychology, 103, 309 – 324. First citation in articleCrossrefGoogle Scholar

  • Landerl, K. , Kaufmann, L. (2008). Dyskalkulie. München: Reinhardt. First citation in articleGoogle Scholar

  • Landerl, K. , Kölle, C. (2009). Typical and atypical development of basic numerical skills in elementary school. Journal of Experimental Child Psychology, 103, 546 – 565. First citation in articleCrossrefGoogle Scholar

  • Mähler, C. , Schuchardt, K. (2011). Working memory in children with learning disability: Rethinking the criterion of discrepancy. International Journal of Disability, Development and Education, 58, 5 – 17. First citation in articleCrossrefGoogle Scholar

  • Marx, P. , Weber, J.-M. , Schneider, W. (2001). Legasthenie versus allgemeine Lese-Rechtschreibschwäche: Ein Vergleich der Leistungen in der phonologischen und visuellen Informationsverarbeitung. Zeitschrift für Pädagogische Psychologie, 15, 85 – 98. First citation in articleLinkGoogle Scholar

  • Mayringer, H. , Wimmer, H. (2003). Salzburger Lese-Screening für die Klassenstufen 1 – 4 (SLS 1 – 4). Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Mazzocco, M. M. M. (2007). Defining and differentiating mathematical learning disabilities and difficulties. In D. B. Berch & M. M. M. Mazzocco (Eds.), Why is math so hard for some children? (pp. 29 – 47). Baltimore: Brookes. First citation in articleGoogle Scholar

  • Mazzocco, M. M. M. , Feigenson, L. , Halberda, J. (2011). Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia). Child Development, 82, 1224 – 1237. First citation in articleCrossrefGoogle Scholar

  • Miller, G. A. , Chapman, J. P. (2001). Misunderstanding analysis of covariance. Journal of Abnormal Psychology, 110, 40 – 48. First citation in articleCrossrefGoogle Scholar

  • Moeller, K. , Fischer, U. , Cress, U. , Nuerk, H.-C. (2012). Diagnostics and intervention in dyscalculia: Current issues and novel perspectives. In Z. Breznitz, O. Rubinsten, V. Molfese & D. L. Molfese (Eds.), Reading, writing, mathematics and the developing brain: Listening to many voices (pp. 233 – 276). Heidelberg: Springer. First citation in articleCrossrefGoogle Scholar

  • Moyer, R. S. , Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215, 1519 – 1520. First citation in articleCrossrefGoogle Scholar

  • Mundy, E. , Gilmore, C. K. (2009). Children's mapping between symbolic and nonsymbolic representations of number. Journal of Experimental Child Psychology, 103, 490 – 502. First citation in articleCrossrefGoogle Scholar

  • Mussolin, C. , Mejias, S. , Noël, M.-P. (2010). Symbolic and nonsymbolic number comparison in children with and without dyscalculia. Cognition, 115, 10 – 25. First citation in articleCrossrefGoogle Scholar

  • Nunnally, J. C. , Bernstein, I. H. (1994). Psychometric theory (3rd ed.). New York: McGraw-Hill. First citation in articleGoogle Scholar

  • Opfer, J. E. , Siegler, R. S. , Young, C. J. (2011). The power of noise fitting: Reply to Barth and Paladino. Developmental Science, 14, 1194 – 1204. First citation in articleCrossrefGoogle Scholar

  • Petermann, F. , Petermann, U. (Hrsg.) (2011). Wechsler Intelligence Scale for Children – Fourth Edition (dt. Version) (WISC-IV). Frankfurt am Main: Pearson Assessment. First citation in articleGoogle Scholar

  • Piazza, M. , Facoetti, A. , Trussardi, A. N. , Berteletti, I. , Conte, S. , Lucangeli, D. et al. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116, 33 – 41. First citation in articleCrossrefGoogle Scholar

  • Price, G. R. , Holloway, I. D. , Rasanen, P. , Vesterinen, M. , Ansari, D. (2007). Impaired parietal magnitude processing in developmental dyscalculia. Current Biology, 17, R1042 – R1043. First citation in articleGoogle Scholar

  • Ramsay, P. H. , Ramsay, P. P. (2009). Power and Type I errors for pairwise comparisons of means in the unequal variances case. British Journal of Mathematical and Statistical Psychology, 62, 263 – 281. First citation in articleCrossrefGoogle Scholar

  • Ratcliff, R. , Thapar, A. , McKoon, G. (2010). Individual differences, aging, and IQ in two-choice tasks. Cognitive Psychology, 60, 127 – 157. First citation in articleCrossrefGoogle Scholar

  • Reeve, R. , Reynolds, F. , Humberstone, J. , Butterworth, B. (2012). Stability and change in markers of core numerical abilities. Journal of Experimental Psychology: General, 141, 649 – 666. First citation in articleCrossrefGoogle Scholar

  • Reigosa-Crespo, V. , Valdes-Sosa, M. , Estevez, N. , Rodriguez, M. , Santos, E. , Suarez, R. et al. (2012). Basic numerical capacities and prevalence of developmental dyscalculia: The Havana survey. Developmental Psychology, 48, 123 – 135. First citation in articleCrossrefGoogle Scholar

  • Rotzer, S. , Kucian, K. , Martin, E. , von Aster, M. , Klaver, P. , Loenneker, T. (2008). Optimized voxel-based morphometry in children with developmental dyscalculia. NeuroImage, 39, 417 – 422. First citation in articleCrossrefGoogle Scholar

  • Rousselle, L. , Noël, M.-P. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs. non-symbolic number magnitude processing. Cognition, 102, 361 – 395. First citation in articleCrossrefGoogle Scholar

  • Rousselle, L. , Noël, M.-P. (2008). The development of automatic numerosity processing in preschoolers: Evidence for numerosity-perceptual interference. Developmental Psychology, 44, 544 – 560. First citation in articleCrossrefGoogle Scholar

  • Rousselle, L. , Noël, M.-P. (2011). Developmental changes in the profiles of dyscalculia: An explanation based on a double exact-and-approximate number representation model. Frontiers in Human Neuroscience, 5, 1 – 4. First citation in articleGoogle Scholar

  • Saß, H. , Wittchen, H.-U. , Zaudig, M. (2003). Diagnostisches und Statistisches Manual psychischer Störungen (DSM-IV-TR): Textrevision. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Schleifer, P. , Landerl, K. (2011). Subitizing and counting in typical and atypical development. Developmental Science, 14, 280 – 291. First citation in articleCrossrefGoogle Scholar

  • Schneider, M. , Grabner, R. H. , Paetsch, J. (2009). Mental number line, number line estimation, and mathematical achievement: The interrelations in grades 5 and 6. Journal of Educational Psychology, 101, 359 – 372. First citation in articleCrossrefGoogle Scholar

  • Schuchardt, K. , Mähler, C. (2010). Unterscheiden sich Subgruppen rechengestörter Kinder in ihrer Arbeitsgedächtniskapazität, im basalen arithmetischen Faktenwissen und in den numerischen Basiskompetenzen? Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 42, 217 – 225. First citation in articleLinkGoogle Scholar

  • Siegel, L. S. (1992). An evaluation of the discrepancy criterion of dyslexia. Journal of Learning Disabilities, 25, 618 – 629. First citation in articleCrossrefGoogle Scholar

  • Siegler, R. S. , Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75, 428 – 444. First citation in articleCrossrefGoogle Scholar

  • Slusser, E. B. , Santiago, R. T. , Barth, H. C. (2013). Developmental change in numerical estimation. Journal of Experimental Psychology: General, 142, 193 – 208. First citation in articleCrossrefGoogle Scholar

  • Spence, I. (1990). Visual psychophysics of simple graphical elements. Journal of Experimental Psychology: Human Perception and Performance, 16, 683 – 692. First citation in articleCrossrefGoogle Scholar

  • Stanovich, K. E. (2005). The future of a mistake: Will discrepancy measurement continue to make the learning disabilities field a pseudoscience? Learning Disability Quarterly, 28, 103 – 106. First citation in articleCrossrefGoogle Scholar

  • Sternberg, R. J. , Grigorenko, E. J. (2002). Difference scores in the identification of children with learning disabilities: It's time to use a different method. Journal of School Psychology, 40, 65 – 83. First citation in articleCrossrefGoogle Scholar

  • Tanaka, H. , Black, J. M. , Hulme, C. , Stanley, L. M. , Kesler, S. R. , Whitfield-Gabrieli, S. et al. (2011). The brain basis of the phonological deficit in dyslexia is independent of IQ. Psychological Science, 22, 1442 – 1451. First citation in articleCrossrefGoogle Scholar

  • Tannock, R. (2013). Rethinking ADHD and LD in DSM-5: Proposed changes in diagnostics criteria. Journal of Learning Disabilities, 46, 5 – 25. First citation in articleCrossrefGoogle Scholar

  • Van den Broeck, W. (2002). The misconception of the regression-based discrepancy operationalization in the definition and research of learning disabilities. Journal of Learning Disabilities, 35, 194 – 204. First citation in articleCrossrefGoogle Scholar

  • Vellutino, F. R. , Fletcher, J. M. , Snlowling, M. J. , Scanlon, D. M. (2004). Specific reading disability (dyslexia): what have we learned in the past four decades? Journal of Child Psychology and Psychiatry, 45, 2 – 40. First citation in articleCrossrefGoogle Scholar

  • Von Aster, M. G. , Shalev, R. S. (2007). Number development and developmental dyscalculia. Developmental Medicine & Child Neurology, 49, 868 – 873. First citation in articleCrossrefGoogle Scholar

  • Von Aster, M. , Weinhold Zulauf, M. , Horn, R. (2006). Neuropsychologische Testbatterie für Zahlenverarbeitung und Rechnen bei Kindern (ZAREKI-R). Frankfurt am Main: Harcourt Test Services. First citation in articleGoogle Scholar

  • Wilson, A. J. , Dehaene, S. (2007). Number sense and developmental dyscalculia. In: D. Coch, G. Dawson & K. Fischer (Eds.), Human behavior, learning, and the developing brain: Atypical development (pp. 212 – 238). New York: Guilford. First citation in articleGoogle Scholar

  • Zuber, J. , Pixner, S. , Moeller, K. , Nuerk, H.-C. (2009). On the language specificity of basic number processing: Transcoding in a language with inversion and its relation to working memory capacity. Journal of Experimental Child Psychology, 102, 60 – 77. First citation in articleCrossrefGoogle Scholar