Skip to main content
Übersichtsarbeit

Neuroplastizität und Lernen im Alter

Published Online:https://doi.org/10.1024/2235-0977/a000081

Trotz des Zitates „was Hänschen nicht lernt, lernt Hans nimmermehr“, ist man niemals zu alt um Neues zu lernen und diese Lernprozesse bewirken bis ins hohe Alter sowohl strukturelle, als auch funktionelle Veränderungen des Gehirns. Neuronale Plastizität beschreibt Veränderungen der Gehirnstruktur und/oder Funktion in Abhängigkeit von Veränderungen im Verhalten, in der Umwelt und in neuronalen Prozessen. Solche Veränderungen können adaptiv (z. B. durch Lernen) oder „restorativ“ (z. B. nach einem Schlaganfall) auftreten und finden ein Leben lang statt.

Das erwachsene Gehirn ist bemerkenswert formbar, aber im Vergleich zu Kindern scheint es für Erwachsene oft schwieriger Neues zu erlernen. Aber auch im Alter ist das Erlernen neuer Fähigkeiten bzw. eine körperliche oder kognitive Leistungssteigerung möglich. Insbesondere zugrundeliegende Veränderungen auf struktureller (Hippocampusvolumen) und funktioneller Ebene (Steigerung der Effizienz) dieser Lernprozesse werden in dieser Übersichtsarbeit exemplarisch dargestellt.

Der folgende Beitrag liefert einen selektiven Überblick über die Veränderungen im Gehirn während wir altern und stellt Möglichkeiten dar, wie erfolgreiches (Gehirn-) Altern gefördert werden kann. Sowohl eine erhöhte physische, als auch geistige Aktivität ermöglicht Leistungssteigerungen in spezifischen, geübten Bereichen und scheint förderlich für gesundes Gehirnaltern. Allerdings scheitert häufig der Transfer dieser Leistungsverbesserungen auf den Alltag. Die Förderung kreativer Denkprozesse, also der Fähigkeit konventionelle Muster des Denkens zu verlassen und Neues/Originelles zu generieren könnte eine Option bieten Transfereffekte zu erleichtern. Allerdings fehlen aktuell systematische, empirische Untersuchungen im Bereich der Kreativitätsförderung im höheren Alter.


Neuronal Plasticity and Learning in Old Age

Background: Aging refers to a progressive, multidimensional process, associated with biological, physiological, psychological and social changes. In view of the increased life expectancy of our population our society is challenged to adapt, in order to maximize the health and functional capacity of older people as well as their social participation and security. Particularly in the context of aging, many individuals strive to find ways to remain physically and mentally healthy. One possibility to promote physical and mental health during aging is to become or stay active and learn new things. Despite the former notion that “you can't teach an old dog new tricks”, an individual is never too old to learn new things and to modify his or her brain. Neuronal plasticity refers to changes in brain structure and/or function in response to changes in behavior, environment and neural processes. Such changes can be adaptive (e. g., during learning) or restorative (e. g., after a stroke) and occur throughout the entire lifespan.

The adult human brain is remarkably malleable, but compared to children it frequently seems more challenging for adults to learn new things. In this article an overview about age-related changes in our brains and possibilities to promote successful (brain) aging is provided. Even if the aging brain displays characteristic structural (e. g., atrophy, white matter hyperintensities – WMH, microbleeds) and functional (e. g., reduced functional connectivity, altered activation pattern) changes, learning of new skills and improvement of physical and cognitive performance is possible, up to old age.

Two concepts are often mentioned in the context of successful brain aging. First, it seems that a higher number of neurons or an increased brain volume respectively may attenuate the detrimental effects of brain aging on physical or cognitive function (Brain Reserve; Valenzuela, 2008). Second, recent studies found that also each individual may actively contribute to successful brain aging by promoting the Cognitive Reserve (e. g., higher educational or occupational attainment, cognitively demanding leisure activities; Stern, 2012). One approach to promote enriching experiences during aging is learning new skills, either physical or cognitive.

Methods: Exemplary studies reporting underlying structural (e. g., hippocampal volume; Erickson et al., 2011) and functional changes (e. g., increase of efficiency; Brehmer et al., 2011) of learning and training in advanced age are presented in this paper.

Results: The positive effects of physical activity are manifold (e. g., risk of cerebrovascular disease is reduced; life quality enhanced, motivation and independency are promoted). As the positive physical and psychological effects of exercise have been known for a long time, we focus on the benefit of physical exercise on cognition and brain function.

Some studies showed that through physical exercise (e. g., aerobic training, dancing) the reduction of brain volume could be reduced, neuronal connections may be strengthened, less WMH seem to appear and cognitive performance could be enhanced (Colcombe et al., 2006; Gomez-Pinilla & Hillman, 2013; Gow et al., 2012; Kraft, 2012). Physical exercise also seems to have a beneficial effect on brain function. Increased activation of the attention network in the brain (e. g., anterior cingulate, prefrontal cortex, parietal cortex) has been observed in physically fit and trained subjects (Colcombe et al., 2004).

Especially physically and mentally demanding activities (e. g., juggling) seem to have a positive effect on brain structure. This has been observed not only in adults, but in the elderly as well (Boyke et al., 2008).

Further studies showed that also through cognitive training, performance can be improved in old age, and that changes in brain structure (e. g., reduction of age-related hippocampal volume loss after four months of spatial navigation training; Lövdén et al., 2012) and function (e. g., improvement of neuronal efficiency related to enhanced working memory performance after a 5-weeks working memory training; Brehmer et al., 2011) occur even in elderly subjects.

Unfortunately, it is often seen that a training of specific cognitive domains (e. g., working memory, processing speed, and executive function) shows no improvements in other cognitive domains (lack of transfer). Therefore, studies were also particularly interested to study potential brain mechanisms underlying any transfer effects. In this context studies revealed an improvement of working memory performance after five weeks of memory training, related to an increase of activation in striatal regions. These results indicate that transfer of cognitive skills may occur, if changes in brain regions are observed that are involved in multiple cognitive domains (i. e., in the trained and in the transfer task). However, age-related restrictions of the transfer effect in older subjects were observed, suggesting that aged individuals might need increased training to accomplish transfer (Dahlin et al., 2008). The promotion of flexible thinking could improve transfer of cognitive skills to other domains. Unfortunately, currently there is a lack of systematic, empirical studies investigating the potential of creativity trainings to improve transfer in older subjects.

Discussion: In general, aging should be seen as a life-long and active process, with the major aim to prevent disease and disability. Recent (neuro-)scientific findings indicate that learning and training of new skills bear great potential to promote successful brain aging. Increased physically and mentally demanding activities have been related to training-specific improvement in old age and seem to have beneficial effects on brain aging (e. g., reduction of age-related hippocampal volume loss or increased functional efficiency). However, transfer of training-specific improvement of performance to everyday life mostly fails. One possibility to facilitate transfer effects of learned skills to everyday life might be the promotion of creativity-related skills (i. e., „thinking outside the box“, producing novelty and originality). Though studies which investigated creativity interventions specifically in samples of older adults are rare, there is no reason to assume that such type of interventions do not work in the elderly as well. „Creativity is not a timebound act nor a function of chronological age“ (Hickson & Housley, 1997, p. 539) and it „… does not have to disappear in the later years when perhaps many need it most“ (ibid., p. 545). Thus, in a continuously aging society we are all – practitioner and scientists – challenged to carefully attend to the question in which way the cognitive capacities of people can be best maintained until old age.

Literatur

  • Allen, J. S. , Bruss, J. , Damasio, H. (2005). The aging brain: the cognitive reserve hypothesis and hominid evolution. American journal of human biology, 17, 673 – 689. First citation in articleGoogle Scholar

  • Anderton, B. H. (2002). Ageing of the brain. Mechanisms of ageing and development, 123, 811 – 817. Retrieved from www.ncbi.nlm.nih.gov/pubmed/11869738 First citation in articleCrossrefGoogle Scholar

  • Andrews-Hanna, J. R. , Snyder, A. Z. , Vincent, J. L. , Lustig, C. , Head, D. , Raichle, M. E. et al. (2007). Disruption of large-scale brain systems in advanced aging. Neuron, 56, 924 – 935. First citation in articleCrossrefGoogle Scholar

  • Angevaren, M. , Aufdemkampe, G. , Verhaar, H. , Aleman, A. , Vanhees, L. (2008). Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database of Systematic Reviews, 16, 16 – 17. First citation in articleGoogle Scholar

  • Ashby, F. G. , Isen, A. M. , Turken, A. U. (1999). A neuropsychological theory of positive affect and its influence on cognition. Psychological Review, 106, 529 – 550. First citation in articleCrossrefGoogle Scholar

  • Baas, M. , De Dreu, C. K. W. , Nijstad, B. A. (2008). A meta-analysis of 25 years of mood-creativity research: Hedonic tone, activation, or regulatory focus? Psychological Bulletin, 134, 779 – 806. First citation in articleCrossrefGoogle Scholar

  • Ball, K. , Berch, D. B. , Helmers, K. F. , Jobe, J. B. , Leveck, M. D. , Marsiske, M. et al. (2002). Effects of Cognitive Training Interventions With Older Adults. Journal of the American Medical Association, 288, 2271 – 2271. First citation in articleCrossrefGoogle Scholar

  • Barrick, T. R. , Charlton, R. A. , Clark, C. A. , Markus, H. S. (2010). White matter structural decline in normal ageing: a prospective longitudinal study using tract-based spatial statistics. NeuroImage, 51, 565 – 577. First citation in articleCrossrefGoogle Scholar

  • Bartley, A. , Jones, D. , Weinberger, D. (1997). Genetic variability of human brain size and cortical gyral patterns. Brain, 120, 257 – 269. First citation in articleCrossrefGoogle Scholar

  • Bendlin, B. B. , Fitzgerald, M. E. , Ries, M. L. , Xu, G. , Kastman, E. K. , Thiel, B. W. et al. (2010). White matter in aging and cognition: a cross-sectional study of microstructure in adults aged eighteen to eighty-three. Developmental neuropsychology, 35, 257 – 277. First citation in articleCrossrefGoogle Scholar

  • Benedek, M. , Fink, A. , Neubauer, A. C. (2006). Enhancement of ideational fluency by means of computer-based training. Creativity Research Journal, 18, 317 – 328. First citation in articleCrossrefGoogle Scholar

  • Boyke, J. , Driemeyer, J. , Gaser, C. , Büchel, C. , May, A. (2008). Training-induced brain structure changes in the elderly. The Journal of neuroscience, 28, 7031 – 7035. First citation in articleCrossrefGoogle Scholar

  • Brehmer, Y. , Rieckmann, A. , Bellander, M. , Westerberg, H. , Fischer, H. , Bäckman, L. (2011). Neural correlates of training-related working-memory gains in old age. NeuroImage, 58, 1110 – 1120. First citation in articleCrossrefGoogle Scholar

  • Charansonney, O. (2011). Physical Activity and Aging: A Life-Long Story. Discovery medicine, 12, 177 – 185. First citation in articleGoogle Scholar

  • Clapp, W. , Hamm, J. , Kirk, I. , Teyler, T. (2013). Translating LTP from animals to humans: A novel method for non-invasive assessment of cortical plasticity. Biological Psychiatry, 71, 496 – 502. First citation in articleCrossrefGoogle Scholar

  • Colcombe, S. J. , Erickson, K. I. , Scalf, P. E. , Kim, J. S. , Prakash, R. , McAuley, E. et al. (2006). Aerobic exercise training increases brain volume in aging humans. The journals of gerontology. Series A, Biological sciences and medical sciences, 61, 1166 – 1170. First citation in articleCrossrefGoogle Scholar

  • Colcombe, S. J. , Kramer, A. F. , Erickson, K. I. , Scalf, P. , McAuley, E. , Cohen, N. J. et al. (2004). Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Sciences, 101, 3316 – 3321. First citation in articleGoogle Scholar

  • Dahlin, E. , Neely, A. S. , Larsson, A. , Bäckman, L. , Nyberg, L. (2008). Transfer of learning after updating training mediated by the striatum. Science, 320 (5882), 1510 – 1512. First citation in articleCrossrefGoogle Scholar

  • Damoiseaux, J. S. , Beckmann, C. F. , Arigita, E. J. S. , Barkhof, F. , Scheltens, P. , Stam, C. J. et al. (2008). Reduced resting-state brain activity in the “default network” in normal aging. Cerebral cortex, 18, 1856 – 1864. First citation in articleCrossrefGoogle Scholar

  • Davis, S. W. , Dennis, N. a. , Daselaar, S. M. , Fleck, M. S. , Cabeza, R. (2008). Que PASA? The posterior-anterior shift in aging. Cerebral cortex, 18, 1201 – 1209. First citation in articleCrossrefGoogle Scholar

  • Dietrich, A. (2004). The cognitive neuroscience of creativity. Psychonomic Bulletin & Review, 11, 1011 – 1026. First citation in articleCrossrefGoogle Scholar

  • Draganski, B. , Gaser, C. , Busch, V. , Schuierer, G. , Bogdahn, U. , May, A. (2004). Changes in grey matter induced by training: Newly honed juggling skills show up as a transient feature on a brain-imaging scan. Nature, 427, 311 – 312. First citation in articleCrossrefGoogle Scholar

  • Draganski, B. , May, A. (2008). Training-induced structural changes in the adult human brain. Behavioural brain research, 192, 137 – 142. First citation in articleCrossrefGoogle Scholar

  • Dugosh, K. L. , Paulus, P. B. , Roland, E. J. , Yang, H.-C. (2000). Cognitive stimulation in brainstorming. Journal of Personality and Social Psychology, 79, 722 – 735. First citation in articleCrossrefGoogle Scholar

  • Enzinger, C. , Fazekas, F. , Matthews, P. M. , Ropele, S. , Schmidt, H. , Smith, S. et al. (2005). Risk factors for progression of brain atrophy in aging: six-year follow-up of normal subjects. Neurology, 64, 1704 – 1711. First citation in articleCrossrefGoogle Scholar

  • Erickson, K. I. , Colcombe, S. J. , Wadhwa, R. , Bherer, L. , Peterson, M. S. , Scalf, P. E. et al. (2007). Training-induced plasticity in older adults: effects of training on hemispheric asymmetry. Neurobiology of aging, 28, 272 – 283. First citation in articleCrossrefGoogle Scholar

  • Erickson, K. I. , Hohmann, T. (2013). Die Effekte von Alter und Training auf die kognitive Gesundheit. Zeitschrift für Sportpsychologie, 20, 25 – 32. First citation in articleLinkGoogle Scholar

  • Erickson, K. I. , Voss, M. W. , Prakash, R. S. , Basak, C. , Szabo, A. , Chaddock, L. et al. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences, 108, 3017 – 3022. First citation in articleGoogle Scholar

  • Eyler, L. T. , Sherzai, A. , Kaup, A. R. , Jeste, D. V. (2011). A review of functional brain imaging correlates of successful cognitive aging. Biological psychiatry, 70, 115 – 122. First citation in articleCrossrefGoogle Scholar

  • Fink, A. , Grabner, R. H. , Benedek, M. , Neubauer, A. C. (2006). Divergent thinking training is related to frontal electroencephalogram alpha synchronization. European Journal of Neuroscience, 23, 2241 – 2246. First citation in articleCrossrefGoogle Scholar

  • Fink, A. , Koschutnig, K. , Benedek, M. , Reishofer, G. , Ischebeck, A. , Weiss, E. M. et al. (2012). Stimulating creativity via the exposure to other people's ideas. Human Brain Mapping, 33, 2603 – 2610. First citation in articleCrossrefGoogle Scholar

  • Fink, A. , Benedek, M. (2012). EEG Alpha Power and Creative Ideation. Neuroscience and Biobehavioral Reviews. doi: 10.1016/j.neubiorev.2012.12.002. [Epub ahead of print]. First citation in articleGoogle Scholar

  • Flood, M. F. , Phillips, K. D. (2007). Creativity in older adults: a plethora of possibilities. Issues in Mental Health Nursing, 28, 389 – 411. First citation in articleCrossrefGoogle Scholar

  • Gates, N. , Fiatarone Singh, M. , Sachdev, P. , Valenzuela, M. (2013). The effect of exercise training on cognitive function in older adult s with mild cognitive impairment: a meta- analysis of randomized controlled trials. American Journal of Geriatric Psychiatry Geriatric Psychiatry, 21, 2013 – 2013. First citation in articleGoogle Scholar

  • Gomez-Pinilla, F. , Hillman, C. (2013). The influence of exercise on cognitive abilities. Journal of Comparative Physiology, 3, 403 – 428. First citation in articleCrossrefGoogle Scholar

  • Gow, A. J. , Bastin, M. E. , Valde, M. C. , Morris, Z. , Murray, C. , Royle, N. A. et al. (2012). Neuroprotective lifestyles and the aging brain. Neurology, 79, 1802 – 1808. First citation in articleCrossrefGoogle Scholar

  • Grady, C. L. (2000). Functional brain imaging and age-related changes in cognition. Biological psychology, 54, 259 – 281. First citation in articleCrossrefGoogle Scholar

  • Greenberg, S. M. , Meike, W. V. , Cordonnier, C. , Viswanathan, A. , Salman, R. A. , Warach, S. et al. (2009). Review Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurology, 8, 165 – 174. First citation in articleCrossrefGoogle Scholar

  • Hedden, T. , Gabrieli, J. D. E. (2004). Insights into the ageing mind: a view from cognitive neuroscience. Nature reviews. Neuroscience, 5, 87 – 96. First citation in articleGoogle Scholar

  • Herculano-Houzel, S. (2009). The human brain in numbers: a linearly scaled-up primate brain. Frontiers in human neuroscience, 3, 31 – 31. First citation in articleCrossrefGoogle Scholar

  • Hickson, J. , Housley, W. (1997). Creativity in later life. Educational Gerontology, 23, 539 – 547. First citation in articleCrossrefGoogle Scholar

  • Hillman, C. H. , Erickson, K. I. , Kramer, A. F. (2008). Be smart, exercise your heart: exercise effects on brain and cognition. Nature reviews. Neuroscience, 9, 58 – 65. First citation in articleCrossrefGoogle Scholar

  • Inzitari, D. , Pracucci, G. , Poggesi, a. , Carlucci, G. , Barkhof, F. , Chabriat, H. et al. (2009). Changes in white matter as determinant of global functional decline in older independent outpatients: three year follow-up of LADIS (leukoaraiosis and disability) study cohort. British Medical Journal, 339, b2477 – b2477. First citation in articleCrossrefGoogle Scholar

  • Kattenstroth, J.-C. , Kalisch, T. , Holt, S. , Tegenthoff, M. , Dinse, H. R. (2013). Six months of dance intervention enhances postural, sensorimotor, and cognitive performance in elderly without affecting cardio-respiratory functions. Frontiers in aging neuroscience, 5, 5 – 5. First citation in articleCrossrefGoogle Scholar

  • Kraft, E. (2012). Cognitive function, physical activity, and aging: possible biological links and implications for multimodal interventions. Neuropsychology, Development and Cognnition B: Aging, Neuropsychology and Cognition, 19, 248 – 263. First citation in articleCrossrefGoogle Scholar

  • Krampen, G. (1997). Promotion of creativity (divergent productions) and convergent productions by systematic-relaxation exercises: empirical evidence from five experimental studies with children, young adults, and elderly. European Journal of Personality, 11, 83 – 99. First citation in articleCrossrefGoogle Scholar

  • Loitfelder, M. , Seiler, S. , Schwingenschuh, P. , Schmidt, R. (2012). Cerebral microbleeds: a review. Panminerva Medicine, 54, 149 – 160. First citation in articleGoogle Scholar

  • Lövdén, M. , Schaefer, S. , Noack, H. , Bodammer, N. C. , Kühn, S. , Heinze, H.-J. et al. (2012). Spatial navigation training protects hippocampus against age-related changes during early and late adulthood. Neurobiology of aging, 33, 620 – 629. First citation in articleCrossrefGoogle Scholar

  • Nithianantharajah, J. , Hannan, A. J. (2009). The neurobiology of brain and cognitive reserve: mental and physical activity as modulators of brain disorders. Progress in neurobiology, 89, 369 – 382. First citation in articleCrossrefGoogle Scholar

  • Raz, N. , Gunning-dixon, F. , Head, D. , Rodrigue, K. M. , Acker, J. D. (2004). Aging, sexual dimorphism, and hemispheric asymmetry of the cerebral differences cortex: replicability of regional difference s in volume. Neurobiology of aging, 25, 377 – 396. First citation in articleCrossrefGoogle Scholar

  • Reijnders, J. , Van Heugten, C. , Van Boxtel, M. (2013). Cognitive interventions in healthy older adults and people with mi ld cognitive impairment: a systematic review. Ageing Research Reviews, 12, 263 – 275. First citation in articleCrossrefGoogle Scholar

  • Rolland, Y. , Vellas, B. (2010). Healthy brain aging: role of exercise and physical activity . Clinics in Geriatric Medicine, 26, 75 – 87. First citation in articleCrossrefGoogle Scholar

  • Runco, M. A. (2004). Creativity. Annual Review of Psychology, 55, 657 – 687. First citation in articleCrossrefGoogle Scholar

  • Schmidt, R. , Grazer, A. , Enzinger, C. , Ropele, S. , Homayoon, N. , Pluta-Fuerst, A. et al. (2011). MRI-detected white matter lesions: do they really matter? Journal of neural transmission, 118, 673 – 681. First citation in articleCrossrefGoogle Scholar

  • Scott, G. , Leritz, L. E. , Mumford, M. D. (2004a). The effectiveness of creativity training: A quantitative review. Creativity Research Journal, 16, 361 – 388. First citation in articleCrossrefGoogle Scholar

  • Scott, G. , Leritz, L. E. , Mumford, M. D. (2004b). Types of creativity training: Approaches and their effectiveness. Journal of Creative Behavior, 38, 149 – 179. First citation in articleCrossrefGoogle Scholar

  • Simonton, D. K. (2000). Creativity: cognitive, personal, developmental, and social aspects. American Psychologist, 55, 151 – 158. First citation in articleCrossrefGoogle Scholar

  • So, K. T. , Orme-Johnson, D. W. (2001). Three randomized experiments on the longitudinal effects of the Transcendental Meditation technique on cognition. Intelligence, 29, 419 – 440. First citation in articleCrossrefGoogle Scholar

  • Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer's disease. Lancet neurology, 11, 1006 – 1012. First citation in articleCrossrefGoogle Scholar

  • Sternberg, R. J. , Lubart, T. I. (1996). Investing in creativity. American Psychologist, 7, 677 – 688. First citation in articleCrossrefGoogle Scholar

  • Sumowski, J. F. , Rocca, M. , Leavitt, V. M. , Riccitelli, G. , Comi, G. , DeLuca, J. et al. (2013). Brain reserve and cognitive reserve in multiple sclerosis: what you've got and how you use it. Neurology, 80, 2186 – 2193. First citation in articleCrossrefGoogle Scholar

  • Valenzuela, M. J. (2008). Brain reserve and the prevention of dementia. Current opinion in psychiatry, 21, 296 – 302. First citation in articleCrossrefGoogle Scholar

  • Weuve, J. , Kang, J. H. , Manson, J. E. , Breteler, M. M. B. , Ware, J. H. , Grodstein, F. (2004). Physical activity, including walking, and cognitive function in older women. The Journal of the American Medical Association, 292, 1454 – 1461. First citation in articleCrossrefGoogle Scholar

  • Willis, S. L. , Tennstedt, S. L. , Marsiske, M. , Ball, K. , Elias, J. , Koepke, K. M. et al. (2006). Long-term effects of cognitive training on everyday functional outcomes in older adults. The Journal of the American Medical Association, 296, 2805 – 2814. First citation in articleCrossrefGoogle Scholar

  • World Health Organization (2013). Health topics: Ageing. Retrieved 8 July 2013 from www.who.int/topics/ageing/en/. First citation in articleGoogle Scholar

  • Yaffe, K. , Fiocco, A. J. , Lindquist, K. , Vittinghoff, E. , Simonsick, E. M. , Newman, A. B. et al. (2009). Predictors of maintaining cognitive function in older adults: the Health ABC study. Neurology, 72, 2029 – 2035. First citation in articleCrossrefGoogle Scholar