Skip to main content
Published Online:https://doi.org/10.1026/0933-6885.17.1.1

Zusammenfassung. Diese Arbeit bietet einen Überblick über die zentralen Studien zum Einfluss von Musik auf die kognitive Leistungsfähigkeit. Unter dem “Mozart-Effekt“ wird die Annahme verstanden, dass die visuell-räumliche Leistungsfähigkeit durch zuvor gehörte Musik, insbesondere Musik von Mozart, verbessert werden kann. Die dargelegten Studien machen deutlich, dass dieser Einfluss wenig mit dem Hören der Mozart-Musik zu tun hat, sondern vielmehr ein Erregungs- bzw. ein Stimmungseffekt ist und darüber hinaus von der Art der experimentellen Versuchsanordnung und der untersuchten Versuchspersonengruppe abhängig ist. Die Analyse der Studien zur Bedeutung des überdauernden praktischen Musizierens weisen insgesamt einen schwachen Zusammenhang zur Verbesserung der allgemeinen Intelligenz auf. Am Ende des Artikels wird die Frage diskutiert, inwiefern neueste Erkenntnisse aus den Neurowissenschaften und der kognitiven Psychologie es erlauben, sich dem Thema der Bedeutung von Musik auf die kognitive Leistungsfähigkeit unter einem anderen Blickwinkel zu nähern. Die Bedeutung dieses Ansatzes für die Musiktherapie wird umrissen.


The Mozart effect - A scientific legend? Or: The influence of music on cognitive performance

Abstract. This paper provides a comprehensive overview of the central studies regarding the influence of music on special cognitive tasks. The term “Mozart effect” became quite popular almost 10 years ago. It describes the phenomenon that spatial cognitive performance or intelligence could be increased by hearing ten minutes of a Mozart sonata. The studies described in this paper show that this phenomenon does not depend on hearing music. It seems quite more plausible that changes in listeners’ arousal levels and their moods induce this effect. Furthermore, it is shown that results vary quite substantially as a function of the experimental design. The analysis of the influence of music lessons reveals small but reliable associations between music lessons and general intelligence. At the end of the paper, the question is raised if the new findings from neuroscience and cognitive psychology may allow the investigation of the influence of music on cognitive performance from a different point of view. Finally the importance of this approach for music therapy will be discussed.

Literatur

  • Ashby, F. G. , Isen, A. M. , Turken, A. U. (1999). A neuropsychological theory of positive affect and its influence on cognition. Psychological Review, 106, 529– 550 CrossrefGoogle Scholar

  • Bangert, M. , Altenmüller, E. (2003). Mapping Perception to Action in Piano Practice: A longitudinal DC-EEG-study. BMC Neuroscience, 4, 26– 36 CrossrefGoogle Scholar

  • Bangerter, A. , Heath, C. (2004). The Mozart effect: Tracking the evolution of a scientific legend. British Journal of Social Psychology, 43, 605– 623 CrossrefGoogle Scholar

  • Bastian, H. G. (2002). Musik(erziehung) und ihre Wirkung . Mainz: Schott Google Scholar

  • Bruhn, H. (2001). Rezension zu Hans Günther Bastian (2000). In H. Gembris, R.-D. Kraemer & G. Maas (Hrsg.), Macht Musik wirklich klüger? (S. 149-152). Augsburg: Wißner-Verlag Google Scholar

  • Chan, A. S. , Ho, Y. C. , Cheung, M. C. (1998). Music training improves verbal memory. Nature, 396, 128– CrossrefGoogle Scholar

  • Halpern, A. R. (1984). Mental scanning in auditory imagery for songs. Journal of Experimental Psychology: Learning, Memory and Cognition, 10, 496– 512 CrossrefGoogle Scholar

  • Hassler, M. , Birbaumer, N. , Feil, A. (1985). Musical talent and visual spatial ability: a longitudinal study. Psychology of Music, 13, 99– 113 CrossrefGoogle Scholar

  • Ivanov, V. K. , Geake, J. G. (2003). The Mozart effect and primary school children. Psychology of Music, 31, 405– 413 CrossrefGoogle Scholar

  • Koelsch, S. (2005). Neural substrates of processing syntax and semantics in music. Current opinion in neurobiology, 15, 1– 6 CrossrefGoogle Scholar

  • Koelsch, S. , Fritz, T. , Schulz, K. , Alsop, D. , Schlaug, G. (2005). Adults and children processing music: An fMRI study. NeuroImage, 25, 1068– 1076 CrossrefGoogle Scholar

  • Koelsch, S. , Fritz, T. , Cramon, D. Y. v. , Müller, K. , Friederici, A. D. (2005). Investigating emotions with music: an fMRI study. Human Brain Mapping, 27, 239– 250 CrossrefGoogle Scholar

  • Koelsch, S. , Gunter, T. , Wittforth, M. , Sammler, D. (2005). Interaction between syntax processing in language and in music: an ERP study. Journal of Cognitive Neuroscience, 17, 1– 13 CrossrefGoogle Scholar

  • Lynn, R. , Wilson, R. G. , Gault, A. (1989). Simple music tests as measures of Spearman’s g. Personal Individual Differences, 10, 25– 28 CrossrefGoogle Scholar

  • McKelvie, P. , Low, J. (2002). Listening to Mozart does not improve children’s spatial ability. Final curtains of the mozart effect. British Journal of Developmental Psychology, 20, 241– 258 CrossrefGoogle Scholar

  • Münte, T. , Altenmüller, E. , Jäncke, L. (2002). The musician’s brain as a model of neuroplasticity. Nature Neuroscience, 3, 473– 478 Google Scholar

  • Nantais, K. M. , Schellenberg, E. G. (1999). The Mozart effect: An artifact of preference. Psychological Science, 10, 370– 373 CrossrefGoogle Scholar

  • O’Hanlon, J. F. (1981). Boredom: Practical consequences and a theory. Acta Psychologica, 49, 53– 82 CrossrefGoogle Scholar

  • Rauscher, F. H. , Shaw, G. L. , Ky, K. N. (1993). Music and spatial task performance. Nature, 365, 611– CrossrefGoogle Scholar

  • Rauscher, F. H. , Shaw, G. L. , Ky, K. N. (1995). Listening to Mozart enhances spatial-temporal reasoning: towards a neurophysiological basis. Neuroscience letters, 185, 44– 47 CrossrefGoogle Scholar

  • Rauscher, F. H. , Shaw, G. L. , Levine, L. J. , Wright, E. L. , Dennis, W. R. , Newcomb, R. L. (1997). Music training causes long-term enhancement of preschool children’s spatial-temporal reasoning. Neurological Research, 19, 2– 8 Google Scholar

  • Rauscher, F. H. , Robinson, K. D. , Jens, J. J. (1998). Improved maze learning through early music exposure in rats. Neurological Research, 20, 427– 432 CrossrefGoogle Scholar

  • Rauscher, F. H. , Zupan, M. A. (2000). Classboard Keyboard instruction improves kindergarten children’s spatial-temporal performance: a field experiment. Early Childhood Research Quarterly, 15, 215– 228 CrossrefGoogle Scholar

  • Thompson, W. F. , Schellenberg, E. G. , Husain, G. (2001). Arousal, mood, and the Mozart effect. Psychological Science, 12, 248– 251 CrossrefGoogle Scholar

  • Shepard, R. N. , Metzler, J. (1971). Mental Rotation of Three-Dimensional Objects. Science, 171, 701– 703 CrossrefGoogle Scholar

  • Solomon, R. L. , Corbit, J. D. (1974). An opponent process theory of motivation. I. Temporal dynamics of affect. Psychological Review, 81, 119– 145 CrossrefGoogle Scholar

  • Standley, J. M. , Hughes, J. E. (1997). Evaluation of an early intervention music curriculum for enhancing prereading/writing skills. Music Therapy Perspective, 15, 79– 85 CrossrefGoogle Scholar

  • Steele, K. M. (2001). Do rats show a Mozart effect?. Music Perception, 21, 251– 265 CrossrefGoogle Scholar

  • Steele, K. M. , Bass, K. E. , Crook, M. D. (1999). The mystery of the Mozart effect: Failure to replicate. Psychological Science, 10, 366– 369 CrossrefGoogle Scholar

  • Steele, K. M. , Dalla Bella, S. , Peretz, I. , Dunlop, T. , Dawe, L. A. , Humphrey, G. K. , Shannon, R. A. , Kirby, J. L. , Olmstead, C. G. (1999). Prelude or requiem for the “Mozart Effect“. Nature, 400, 826– 827 CrossrefGoogle Scholar

  • Schellenberg, E. G. (in press) Exposure to music: The truth about the consequences. In G. E. McPherson (Ed.), The child as a musician: A handbook of musical development. Oxford: Oxford University Press Google Scholar

  • Schellenberg, E. G. (2004). Music lessons enhance IQ. Psychological Science, 15, 511– 514 CrossrefGoogle Scholar

  • Schellenberg, E. G. (2001). Music and nonmusical abilities. Annals of the New York Academy of Sciences, 930, 355– 371 CrossrefGoogle Scholar

  • Schellenberg, E. G. , Hallam, S. (2005). Music listening and cognitive abilities in 10 and 11 year olds: The Blur effect. Annals of the New York Academy of Sciences, 1060, CrossrefGoogle Scholar

  • Schellenberg, E. G. , Nakata, T. , Hunter, P. G. , Tamoto, S. (in press) Exposure to music and cognitive performance: Tests of children and adults. Psychology of Music, Google Scholar

  • Spitzer, M. (2005). Musik im Kopf . Stuttgart: Schattauer Google Scholar

  • Spychiger, M. (2001). Was bewirkt Musik?. In H. Gembris, R.-D. Kraemer & G. Maas (Hrsg.), Macht Musik wirklich klüger? (S. 9-34). Augsburg: Wißner-Verlag Google Scholar

  • Yerkes, R. , Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit-rormation. Journal of Comparative Neurology and Psychology, 18, 459– 482 CrossrefGoogle Scholar