Skip to main content
Original Article

Impact of Music on Cardiac Patients

Neuroscientific and Endocrinological Perspectives and Underlying Mechanisms

Published Online:https://doi.org/10.1026/0933-6885/a000222

Abstract. Controlled studies and clinical observations can elucidate the influence of music on blood pressure and heart rate, but do not explain underlying mechanisms. Clarification of contradictory scientific results requires an understanding of corresponding psycho-neuroendocrinological processes and is also indispensable to patient-centered cardiac music therapy interventions. The paper is intended to complement the thematic issue on music therapy in cardiology (MTK 25 (1), 2014). To identify neural and neuroendocrine modules linking auditory and neurocardiac systems. This should facilitate a diagnosis-specific application of music for cardiac patients. Review of empirical, neuroanatomic, and interdisciplinary medical findings about cerebral music processing. Meta-synthesis and construction of a theoretical framework that explains the impact of music on blood pressure and heart rate. Music-induced cardiac processes can be elucidated by neural and neuroendocrine modules linking auditory processing areas and neurocardiac centers. Efferent projections from the auditory pathway as well as top–down projections arising from the auditory cortex form specific functional circuitries. Overlapping and interacting projections from cortical and subcortical regions to associative processing organs (e. g., the insular cortex) integrate both physiologically and cognitively processed sound factors (i. e., the dualistic model). Via corresponding modules the auditory system is indirectly linked to hypothalamic nuclei, influencing the hypothalamic–pituitary–adrenal axis as well as vasopressin- and oxytocin-related processes. Connections with the locus coeruleus refer to noradrenergic sound–heart regulation. Physiological mechanisms interacting with individual musical experiences require the synopsis of evidence-based findings, neuroendocrinological explanations, and differential psychological profiles for reliable treatment planning.


Einfluss von Musik auf Herzpatienten. Neurowissenschaftliche und endokrinologische Perspektiven und Mechanismen

Zusammenfassung. Kontrollierte Studien und klinische Beobachtungen machen den Einfluss von Musik auf Blutdruck und Herzraten deutlich, decken aber keine tiefer liegende Mechanismen auf. Zudem bedarf die Klärung widersprüchlicher Forschungsergebnisse oft des Verstehens psycho-neuro-endokriner Prozesse, welche mit solchen Phänomenen zusammenhängen. Erklärende Theorien zu diesen Mechanismen helfen darüber hinaus musik-kardiologische Interventionen patientenzentriert durchzuführen. Der vorliegende Artikel nimmt damit auf das Themenheft „Kardiologie in der Musiktherapie“ (MTK 25 (1), 2014) Bezug und ist als Ergänzung zu verstehen: Identifizierung neuronaler und neuro-endokriner Module, welche das auditive and das neurokardiale System verbinden. Dies soll diagnosespezifische Anwendung von Musik bei Herzpatienten erleichtern. Auf der Basis empirischer, neuroanatomischer und interdisziplinärer medizinischer Erkenntnisse über zerebrale Musikverarbeitung wird eine Metasynthese erstellt. Das daraus entwickelte Theoriekonstrukt erklärt den Einfluss von Musik auf Blutdruck und Herzraten. Durch Musik beeinflusste Herzprozesse können durch Funktionen neuronaler und neuroendokriner Module, die Areale auditiver Verarbeitung und neurokardiale Zentren verbinden, erklärt werden. Efferente Projektionen aus der Hörbahn und absteigende aus dem auditiven Kortex formen spezifische funktionale Systeme. Information aus kortikalen und subkortikalen Regionen überlagern sich und interagieren. In assoziativen Hirnzentren (z. B. insulärer Kortex) werden diese zusammengeführt, physiologische und kognitive Faktoren integriert. In der Folge wird ein dualistisches Modell–kortikale und subkortikale Herzregulation durch Musik–eingeführt. Über korrespondierende Module ist das auditive System indirekt mit hypothalamischen Kernen verbunden, welche die Hypothalamus-Hypophysen-Nebennierenrinden-Achse und Vasopressin wie auch Oxytocin beeinflussen. Verbindungen mit dem Locus Caeruleus betreffen die noradrenerge Klang-Herz-Regulation. Physiologische auditive Mechanismen interagieren mit individueller musikalischer Erfahrung. Musik-kardiologische Interventionsplanung erfordert eine Synopse von evidenz-basierten Erkenntnissen, neuro-endokrinologischen Erklärungen und differentiell psychologischen Profilen.

References

  • Aitkin, L. M., Dickhaus, H., Schult, W., & Zimmermann, M. (1978). External nucleus of inferior colliculus: auditory and spinal somatosensory afferents and their interactions. Journal of Neurophysiology, 41, 837 – 847. First citation in articleGoogle Scholar

  • al-Qifti, I. (1248). Ta’rikh-i hukama. The history of learned men. Islamic Medical Manuscripts at the National Library of Medicine. MS A 72. Bethesda, MD: U.S. National Library of Medicine. First citation in articleGoogle Scholar

  • Amaral, J. A., Nogueira, M. L., Roque, A. L., Guida, H. L., De Abreu, L. C., Raimundo, R. D., & ⋯ Valenti, V. E. (2014). Cardiac autonomic regulation during exposure to auditory stimulation with classical baroque or heavy metal music of different intensities. Türk Kardiyoloji Derneği Arşivi, 42, 139 – 146. doi: 10.5543/tkda.2014.39000 First citation in articleCrossrefGoogle Scholar

  • Angelucci, F., Ricci, E., Padua, L., Sabino, A., & Tonali, P. A. (2007). Music exposure differently alters the levels of brain-derived neurotropic factor and nerve growth factor in the mouse hypothalamus. Neuroscience Letters, 429, 152 – 155. First citation in articleCrossrefGoogle Scholar

  • Badiu C. (2012). Cardio-endocrinology. Different approaches, common targets. Acta Endocrinologica, 8, 341 – 343. doi: 10.4183/aeb.2012.341 First citation in articleCrossrefGoogle Scholar

  • Bailey, T. W., Hermes, S. M., Andresen, M. C., & Aicher, S.A. (2006). Cranial visceral afferent pathways through the nucleus of the solitary tract to caudal ventrolateral medulla or paraventricular hypothalamus: Target-specific synaptic reliability and convergence patterns. The Journal of Neuroscience, 26, 11893 – 11902. doi: 10.1523/JNEUROSCI.2044-06.2006 First citation in articleCrossrefGoogle Scholar

  • Bauer, B. A., Cutshall, S. A., Anderson, P. G., Prinsen, S. K., Wentworth, L. J., Olney, T. J., & ⋯ Bauer, B. A. (2011). Effect of the combination of music and nature sounds on pain and anxiety in cardiac surgical patients: A randomized study. Alternative Therapies in Health and Medicine, 17(4), 16 – 23. First citation in articleGoogle Scholar

  • Bernardi, L., Porta, C., Casucci, G., Balsamo, R., Bernardi, N. F., Fogari, R., & Sleight, P. (2009). Dynamic interactions between musical, cardiovascular, and cerebral rhythms in humans. Circulation, 119, 3171 – 3180. doi: 10.1161/CIRCULATIONAHA.108.806174 First citation in articleCrossrefGoogle Scholar

  • Bigby, J. A. (Ed.). (2003). Cross-cultural medicine. Philadelphia, PA: American College of Physicians. First citation in articleGoogle Scholar

  • Bourk, T. R., Mielcarz, J. P., & Norris, B. E. (1981). Tonotopic organization of the anteroventral cochlear nucleus of the cat. Hearing Research, 4, 215 – 241. First citation in articleCrossrefGoogle Scholar

  • Bradt, J., & Dileo, C. (2009). Music for stress and anxiety reduction in coronary heart disease patients. The Cochrane Database of Systematic Reviews, 2, CD006577. doi: 10.1002/14651858.CD006577.pub2 First citation in articleGoogle Scholar

  • Carter, C. S., Grippo, A. J., Pournajafi-Nazarloo, H., Ruscio, M. G., & Porges, S. W. (2008). Oxytocin, vasopressin and sociality. Progress in Brain Research, 170, 331 – 336. doi: 10.1016/S0079-6123(08)00427-5 First citation in articleCrossrefGoogle Scholar

  • Chanda, M. L., & Levitin, D. J. (2013). The neurochemistry of music. Trends in Cognitive Sciences, 17, 179 – 193. doi: 10.1016/j.tics.2013.02.007 First citation in articleCrossrefGoogle Scholar

  • Chang, H. K., Peng, T. C., Wang, J. H., & Lai, H. L. (2011). Psychophysiological responses to sedative music in patients awaiting cardiac catheterization examination: A randomized controlled trial. The Journal of Cardiovascular Nursing, 26(5), E11–E18. doi: 10.1097/JCN.0b013e318fb711b First citation in articleCrossrefGoogle Scholar

  • Chen, J. L., Zatorre, R. J., & Penhune, V. B. (2006). Interactions between auditory and dorsal premotor cortex during synchronization to musical rhythms. Neuroimage, 32, 1771 – 1781. First citation in articleCrossrefGoogle Scholar

  • Clugnet, M. C., & LeDoux, J. E. (1990). Synaptic plasticity in fear conditioning circuits: Induction of LTP in the lateral nucleus of the amygdala by stimulation of the medial geniculate body. The Journal of Neuroscience, 10, 2818 – 2824. First citation in articleGoogle Scholar

  • da Silva, A. G., Guida, H. L., dos Santos Antônio, A. M., Marcomini, R. S., Fontes, A. M., Carlos de Abreu, L., & ⋯ Valenti, V. E. (2014). An exploration of heart response to differing music rhythm and tempos. Complementary Therapies in Clinical Practice, 20, 130 – 134. doi: 10.1016/j.ctcp.2013.09.004 First citation in articleCrossrefGoogle Scholar

  • da Silva, S. A., Guida, H. L., dos Santos Antônio, A. M., de Abreu, L. C., Monteiro, C. B. M., Ferreira, C., & ⋯ Valenti, V. E. (2014). Acute auditory stimulation with different styles of music influence cardiac autonomic regulation in men. International Cardiovascular Research Journal, 8, 105 – 110. First citation in articleGoogle Scholar

  • da Silva, S. A., Guida, H. L., dos Santos Antônio, A. M., Vanderlei, L. C. M., Ferreira, L. L., de Abreu, L. C., & ⋯ Valenti, V. E. (2014). Auditory stimulation with music influences the geometric indices of heart rate variability in men. International Archives of Medicine, 7, 27. doi: 10.1186/1755-7682-7-27 First citation in articleCrossrefGoogle Scholar

  • Dai, L., Carter, C. S., Ying, J., Bellugi, U., Pournajafi-Nazarloo, H., & Korenberg, J. R. (2012). Oxytocin and vasopressin are dysregulated in Williams Syndrome, a genetic disorder affecting social behavior. PLoS One, 7(6), e38513. doi: 10.1371/journal.pone.0038513 First citation in articleCrossrefGoogle Scholar

  • du Vigneaud, V., Ressler, C., Swan, J. M., Roberts, C. W., & Katsoyannis, P. G. (1954). The synthesis of oxytocin. Journal of the American Chemical Society, 76, 3115 – 3121. First citation in articleCrossrefGoogle Scholar

  • Egorova, M., & Ehret, G. (2008). Tonotopy and inhibition in the midbrain inferior colliculus shape spectral resolution of sounds in neural critical bands. The European Journal of Neuroscience, 28, 675 – 692. doi: 10.1111/j.1460-9568.2008.06376.x First citation in articleCrossrefGoogle Scholar

  • Ehret, G., & Merzenich, M. M. (1988). Complex sound analysis (frequency resolution, filtering and spectral integration) by single units of the inferior colliculus of the cat. Brain Research, 472, 139 – 163. First citation in articleCrossrefGoogle Scholar

  • Engelmann, M., Landgraf, R., & Wotjak, C. T. (2004). The hypothalamic-neurohypophysial system regulates the hypothalamic-pituitary-adrenal axis under stress: An old concept revisited. Frontiers in Neuroendocrinology, 25, 132 – 149. First citation in articleCrossrefGoogle Scholar

  • Fonseca, V. (Ed.). (2009). Cardiovascular endocrinology: Shared pathways and clinical crossroads. New York, NY: Humana Press. First citation in articleCrossrefGoogle Scholar

  • Frank, J. G., & Mendelowitz, D. (2012). Synaptic and intrinsic activation of GABAergic neurons in the cardiorespiratory brainstem network. PLoS One, 7(5):e36459. doi: 10.1371/journal.pone.0036459 First citation in articleCrossrefGoogle Scholar

  • Gittelman, J. X., Li, N., & Pollak, G. D. (2009). Mechanisms underlying directional selectivity for frequency-modulated sweeps in the inferior colliculus revealed by in vivo whole-cell recordings. The Journal of Neuroscience, 29, 13030 – 13041. doi: 10.1523/JNEUROSCI.2477-09.2009 First citation in articleCrossrefGoogle Scholar

  • Greenwood, R. S., Meeker, R. B., & Hayward, J. N. (1991). Amygdala kindling elevates plasma vasopressin. Brain Research, 538(1), 9 – 14. First citation in articleCrossrefGoogle Scholar

  • Grewen, K. M., & Light, K. C. (2011). Plasma oxytocin is related to lower cardiovascular and sympathetic reactivity to stress. Biological Psychology, 87, 340 – 349. doi: 10.1016/j.biopsycho.2011.04.003 First citation in articleCrossrefGoogle Scholar

  • Gutkowska, J., & Jankowski, M. (2012). Oxytocin revisited: Its role in cardiovascular regulation. Journal of Neuroendocrinology, 24, 599 – 608. doi: 10.1111/j.1365-2826.2011.02235.x First citation in articleCrossrefGoogle Scholar

  • Hanser, S. B., & Mandel, S. E. (2014). Harmony of the heart: Music therapy. Investigations of music therapy in cardiac rehabilitation. Musik-, Tanz- und Kunsttherapie, 25, 3 – 8. doi: 10.1026/0933-6885/a000137 First citation in articleLinkGoogle Scholar

  • Harrer, G. (Ed.). (1975). Grundlagen der Musiktherapie und Musikpsychologie [Essentials of Music Therapy and Music Psychology]. Stuttgart, Germany: Gustav Fischer Verlag. First citation in articleGoogle Scholar

  • Healy, D. P., Jew, J. Y., Black, A. C., & Williams, T. H. (1981). Bradycardia following injection of 6-hydroxydopamine into the intermediate portion of nucleus tractus solitarius medialis. Brain Research, 206, 415 – 420. First citation in articleCrossrefGoogle Scholar

  • Helfferich, F., & Palkovits, M. (2003). Acute audiogenic stress-induced activation of CRH neurons in the hypothalamic paraventricular nucleus and catecholaminergic neurons in the medulla oblangata. Brain Research, 975(1 – 2), 1 – 9. First citation in articleCrossrefGoogle Scholar

  • Herdener, M., Lehmann, C., Esposito, F., di Salle, F., Federspiel, A., Bach, D. R., & ⋯ Seifritz, E. (2009). Brain responses to auditory and visual stimulus offset: Shared representations of temporal edges. Human Brain Mapping, 30, 725 – 733. doi: 10.1002/hbm.20539 First citation in articleCrossrefGoogle Scholar

  • Higa, K. T., Mori, E., Viana, F. F., Morris, M., & Michelini, L. C. (2002). Baroreflex control of heart rate by oxytocin in the solitary-vagal complex. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 282(2), R537–R545. doi: 10.1152/ajpregu.00806.2000 First citation in articleCrossrefGoogle Scholar

  • Hirokawa, E., & Ohira, H. (2003). The effects of music listening after a stressful task on immune functions, neuro-endocrine responses, and emotional states in college students. Journal of Music Therapy, 40, 189 – 211. doi: 10.1093/jmt/40.3.189 First citation in articleCrossrefGoogle Scholar

  • Iigaya, K., Müller-Ribeiro, F. C., Horiuchi, J., McDowall, L. M., Nalivaiko, E., Fontes, M. A., & Dampney, R. A. (2012). Synchronized activation of sympathetic vasomotor, cardiac, and respiratory outputs by neurons in the midbrain colliculi. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 303(6), R599–R610. doi: 10.1152/ajpregu.00205.2012 First citation in articleCrossrefGoogle Scholar

  • Jankowski, M., Gonzalez-Reyes, A., Noiseux, N., & Gutkowska, J. (2012). Oxytocin in the heart regeneration. Recent Patents on Cardiovascular Drug Discovery, 7(2), 81 – 87. doi: 10.2174/157489012801227210 First citation in articleCrossrefGoogle Scholar

  • Juckett, G. (2005). Cross-cultural medicine. American Family Physician, 72, 2267 – 2274. First citation in articleGoogle Scholar

  • Khalfa, S., Bella, S. D., Roy, M., Peretz, I., & Lupien, S. J. (2003). Effects of relaxing music on salivary cortisol level after psychological stress. Annals of the New York Academy of Sciences, 999, 374 – 376. doi: 10.1196/annals.1284.045 First citation in articleCrossrefGoogle Scholar

  • Knight, W. E., & Richard, N. S. (2001). Relaxing music prevents stress-induced increases in subjective anxiety, systolic blood pressure, and heart rate in healthy males and females. Journal of Music Therapy, 38, 254 – 272. doi: 10.1093/jmt/38.4.254 First citation in articleCrossrefGoogle Scholar

  • Kreutz, G., Bongard, S., Rohrmann, S., Hodapp, V., & Grebe, D. (2004). Effects of choir singing or listening on secretory immunoglobulin A, cortisol, and emotional state. Journal of Behavioral Medicine, 27, 623 – 635. First citation in articleCrossrefGoogle Scholar

  • Kumar, S., von Kriegstein, K., Friston, K., & Griffith, T. D. (2012). Features versus feelings: Dissociable representations of the acoustic features and valence of aversive sounds. The Journal of Neuroscience, 32, 14184 – 14192. doi: 10.1523/JNEUROSCI.1759-12.2012 First citation in articleCrossrefGoogle Scholar

  • Kupper, N., Pedersen, S. S., Höfer, S., Saner, H., Oldridge, N. & Denollet, J. (2013). Cross-cultural analysis of Type D (distressed) personality in 6222 patients with ischemic heart disease: A study from the International HeartQoL Project. International Journal of Cardiology, 166, 327 – 333. doi: 10.1016/j.ijcard.2011.10.084 First citation in articleCrossrefGoogle Scholar

  • Lee, G. S., Chen, M. L., & Wang, G. Y. (2010). Evoked response of heart rate variability using short-duration white noise. Autonomic Neuroscience: Basic & Clinical, 155(1 – 2), 94 – 97. doi: 10.1016/j.autneu.2009.12.008 First citation in articleCrossrefGoogle Scholar

  • Li, Y., Rui, X., Li, S., & Pu, F. (2014). Investigation of global and local network properties of music perception with culturally different styles of music. Computers in Biology and Medicine, 54, 37 – 43. doi: 10.1016/j.compbiomed.2014.08017 First citation in articleCrossrefGoogle Scholar

  • Liégois-Chauvel, C., Peretz, I., Babaï, M., Laguitton, V., & Chauvel, P. (1998). Contribution of different cortical areas in the temporal lobes to music processing. Brain, 121(Pt 19), 1853 – 1867. doi: 10.1093/brain/121.10.1853 First citation in articleCrossrefGoogle Scholar

  • Liu, J., Wang, C., Xiao, Z., & Zhou, L. (2014). Changes of response patterns to excitatory stimuli of different intensities: A model-based study of cochlear nucleus neurons. 南方医科大学学报 Nan Fang Yi Ke Da Xue Xue Bao / Journal of Southern Medical University, 34(3), 291 – 294. First citation in articleGoogle Scholar

  • Lusk, S. L., Gillespie, B., Hagerty, B. M., & Ziemba, R. A. (2004). Acute effects of noise on blood pressure and heart rate. Archives of Environmental Health, 59, 392 – 399. First citation in articleCrossrefGoogle Scholar

  • Mandel, S. E., Hanser, S. B., Secic, M., & Davis, B. A. (2007). Effects of music therapy on health-related outcomes in cardiac rehabilitation: A randomized controlled trial. Journal of Music Therapy, 44, 176 – 197. First citation in articleCrossrefGoogle Scholar

  • Markovitz, C. D., Tang, T. T., & Lim, H. H. (2013). Tonotopic and localized pathways from primary auditory cortex to the central nucleus of the inferior colliculus. Frontiers in Neural Circuits, 7, 77. doi:10.3389/fncir.2013.00077 First citation in articleCrossrefGoogle Scholar

  • Mastnak, W. (2014a). Musiktherapie in der Kardiologie. Probleme, Applikationen, Perspektiven [Music therapy in cardiology: Problems, applications, perspectives]. Musik-, Tanz- und Kunsttherapie, 25, 9 – 25. doi: 10.1026/0933-6885/a000132 First citation in articleLinkGoogle Scholar

  • Mastnak, W. (2014b). Kardio-Sound-Work. Praxismodell für die Herz-Rehabilitation [Cardio Sound Work. A practice model of heart rehabilitation]. Musik-, Tanz- und Kunsttherapie, 25, 34 – 44. doi: 10.1026/0933-6885/a000131 First citation in articleLinkGoogle Scholar

  • McKinney, C. H., Antoni, M. H., Kumar, M., Tims, F. C., & McCabe, P. M. (1997). Effects of guided imagery and music (GIM) therapy on mood and cortisol in healthy adults. Health Psychology, 16, 390 – 400. First citation in articleCrossrefGoogle Scholar

  • Meyer, L. B. (1989). Style and music. Theory, history, and ideology. Chicago, IL: The University of Chicago Press. First citation in articleGoogle Scholar

  • Meyer-Lindenberg, A., Domes, G., Kirsch, P., & Heinrichs, M. (2011). Oxytocin and vasopressin in the human brain: Social neuropeptides for translational medicine. Nature Reviews. Neuroscience, 12, 524 – 538. doi: 10.1038/nrn3044 First citation in articleCrossrefGoogle Scholar

  • Morrison, S. J., Demorest, S. M., Aylward, E. H., & Maravilla, K. R. (2003). FMRI investigation of cross-cultural music comprehension. NeuroImage, 20, 378 – 384. First citation in articleCrossrefGoogle Scholar

  • Murphy, P. R., Robertson, I. H., Balsters, J. H., & O’connell, R. G. (2011). Pupillometry and P3 index the locus coeruleus-noradrenergic arousal functions in humans. Psychophysiology, 48, 1532 – 1543. doi: 10.1111/j.1469-8986.2011.01226.x First citation in articleCrossrefGoogle Scholar

  • Murrock, C. J. (2002). The effect of music on the rate of perceived exertion and general mood among coronary artery bypass graft patients enrolled in cardiac rehabilitation phase II. Rehabilitation Nursing, 27, 227 – 231. First citation in articleCrossrefGoogle Scholar

  • Nakamura, T., Tanida, M., Niijima, A. & Nagai, K. (2009). Effect of auditory stimulation on parasympathetic nerve activity in urethane-anesthetized rats. In Vivo, 23, 415 – 419. First citation in articleGoogle Scholar

  • Nakamura, T., Tanida, M., Niijima, A., Hibino, H., Shen, J., & Nagai, K. (2007). Auditory stimulation affects renal sympathetic nerve activity and blood pressure in rats. Neuroscience Letters, 416, 107 – 112. First citation in articleCrossrefGoogle Scholar

  • Namdar, H., Taban Sadeghi, M., Sabourimoghaddam, H., Sadeghi, B., & Ezzati, D. (2014). Effects of music on cardiovascular responses in men with essential hypertension compared with healthy men based on introversion and extraversion. Journal of Cardiovascular and Thoracic Research, 6, 185 – 189. doi: 10.15171/jcvtr.2014.009 First citation in articleCrossrefGoogle Scholar

  • Nan, Y., Knösche, T. R., Zysset, S., & Friederici, A. D. (2008). Cross-cultural music phrase processing: an fMRI study. Human Brain Mapping, 29, 312 – 328. First citation in articleCrossrefGoogle Scholar

  • Nilsson, U. (2009). Soothing music can increase oxytocin levels during bed rest after open-heart surgery: A randomised control trial. Journal of Clinical Nursing, 18, 2153 – 2161. doi: 10.1111/j.1365-2702.2008.02718.x First citation in articleCrossrefGoogle Scholar

  • Oertel, D., Fay, R. R., & Popper, A. N. (Eds.). (2002). Integrative functions in the mammalian auditory pathway. New York, NY: Springer. First citation in articleCrossrefGoogle Scholar

  • Okada, K., Kurita, A., Takase, B., Otsuka, T., Kodani, E., Kusama, Y., & ⋯ Mizuno, K. (2009). Effects of music therapy on autonomic nervous system activity, incidence of heart failure events, and plasma cytokine and catecholamine levels in elderly patients with cerebrovascular disease and dementia. International Heart Journal, 50, 95 – 110. doi: 10.1536/ihj.50.95 First citation in articleCrossrefGoogle Scholar

  • Oppenheimer, S. (2006). Cerebrogenic cardiac arrhythmias: Cortical lateralization and clinical significance. Clinical Autonomic Research, 16(1), 6 – 11. doi: 10.1007/s10286-006-0276-0 First citation in articleCrossrefGoogle Scholar

  • Oppenheimer, S. M., & Cechetto, D. F. (1990). Cardiac chronotropic organization of the rat insular cortex. Brain Research, 533(1), 66 – 72. First citation in articleCrossrefGoogle Scholar

  • Oppenheimer, S. M., Gelb, A., Girvin, J. P., & Hachinski, V. C. (1992). Cardiovascular effects of human insular cortex stimulation. Neurology, 42, 1727 – 1732. First citation in articleCrossrefGoogle Scholar

  • Poeppel, D., Overath, T., Popper, A., & Fay, R. R. (Eds.). (2012). The human auditory cortex. New York, NY: Springer. First citation in articleCrossrefGoogle Scholar

  • Pollak, G. D., Xie, R., Gittelman, J. X., Andoni, S., & Li, N. (2011). The dominance of inhibition in the inferior colliculus. Hearing Research, 274(1 – 2), 27 – 39. doi: 10.1016/j.heares.2010.05.010 First citation in articleCrossrefGoogle Scholar

  • Popova, N. K., Barykina, N. N., Plyusnina, T. A., Alekhina, T. A., & Kolpakov, V. G. (2000). Expression of the startle reaction in rats genetically predisposed towards different types of defensive behavior. Neuroscience and Behavioral Physiology, 30, 321 – 325. First citation in articleCrossrefGoogle Scholar

  • Prewitt, C. M., & Herman, J. P. (1998). Anatomical interactions between the central amygdaloid nucleus and the hypothalamic paraventricular nucleus of the rat: A dual tract-tracing analysis. Journal of Chemical Neuroanatomy, 15, 173 – 185. First citation in articleCrossrefGoogle Scholar

  • Pyner, S. (2014). The paraventricular nucleus and heart failure. Experimental Physiology, 99, 332 – 339. doi: 10.1113/expphysiol.2013.072678 First citation in articleCrossrefGoogle Scholar

  • Rhomberg, F., Moeslinger, T., & Gottsauner-Wolf, M. (2014). Music-induced prolongation of heart rate corrected QT intervals from electrocardiogram recordings of healthy preterm pregnant women. Journal of Perinatal Medicine, 44, 631 – 635. doi: 10.1515/jpm-2014-0200 First citation in articleCrossrefGoogle Scholar

  • Rodgers, K. M., Benison, A. M., Klein, A., & Barth, D. S. (2008). Auditory, somatosensory, and multisensory insular cortex in the rat. Cerebral Cortex, 18, 2941 – 2951. doi: 10.1093/cercor/bhn054 First citation in articleCrossrefGoogle Scholar

  • Rohrmeier, M. A., & Koelsch, S. (2012). Predictive information processing in music cognition. A critical review. International Journal of Psychophysiology, 83, 164 – 175. doi: 10.1016/j.ijpsycho.2011.12.010 First citation in articleCrossrefGoogle Scholar

  • Roque, A. L., Valenti, V. E., Guida, H. L., Campos, M. F., Knap, A., Vanderlei, L. C., & ⋯ de Abreu, L. C. (2013). The effects of different styles of musical auditory stimulation on cardiac autonomic regulation in healthy women. Noise & Health, 15, 281 – 287. doi: 10.4103/1463-1741.113527 First citation in articleCrossrefGoogle Scholar

  • Salimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A., & Zatorre, R. J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 14, 257 – 262. doi: 10.1038/nn.2726 First citation in articleCrossrefGoogle Scholar

  • Salimpoor, V. N., Benovoy, M., Longo, G., Cooperstock, J. R., & Zatorre, R. J. (2009). The rewarding aspects of music listening are related to degree of emotional arousal. PLoS One, 4(10), 37487. doi: 10.1371/journal.pone.0007487 First citation in articleGoogle Scholar

  • Schofield, B. R., Mellott, J. G., & Motts, S. D. (2014). Subcollicular projections to the auditory thalamus and collateral projections to the inferior colliculus. Frontiers in Neuroanatomy, 8, 70. doi: 10.3389/fnana.2014.00070 First citation in articleCrossrefGoogle Scholar

  • Short, A., Gibb, H., Fildes, J., & Holmes, C. (2013). Exploring the role of music therapy in cardiac rehabilitation after cardiothoracic surgery: A qualitative study using the Bonny method of Guided Imagery and Music. The Journal of Cardiovascular Nursing, 28(6), E74 – E81. doi: 10.1097/JCN.0b013e31825bc9c9 First citation in articleGoogle Scholar

  • Sleight, P. (2013). Cardiovascular effects of music by entraining cardiovascular autonomic rhythms music therapy update: Tailored to each person, or does one size fit all? Netherlands Heart Journal, 21(2), 99 – 100. doi: 10.1007/s12471-012-0359-6 First citation in articleCrossrefGoogle Scholar

  • Sousa-Pinto, B., Ferreira-Pinto, M. J., Santos, M., & Leite-Moreira, A. F. (2014). Central nervous system circuits modified in heart failure: Pathophysiology and therapeutic implications. Heart Failure Reviews, 19, 759 – 779. doi: 10.1007/s10741-014-9427-x First citation in articleCrossrefGoogle Scholar

  • Sutoo, D., & Akiyama, K. (2004). Music improves dopaminergic neurotransmission: Demonstration based on the effect of music on blood pressure regulation. Brain Research, 1016, 255 – 262. First citation in articleCrossrefGoogle Scholar

  • Takemoto, M., Hasegawa, K., Nishimura, M., & Song, W. J. (2014). The insular auditory field receives input from the lemniscal subdivision of the auditory thalamus in mice. The Journal of Comparative Neurology, 522, 1373 – 1389. doi: 10.1002/cne.23491 First citation in articleCrossrefGoogle Scholar

  • Trappe, H. J. (2010). The effects of music on the cardiovascular system and cardiovascular health. Heart, 96, 1868 – 1871. doi: 10.1136/hrt.2010.209858 First citation in articleCrossrefGoogle Scholar

  • Trappe, H. J., & Breker, I. M. (2014). Effekte von Musik auf das Herz-Kreislauf-System. Was ist gesichert, was nicht, was ist neu? [Effects of music on the cardiovascular system: What is verified, what not, what’s new?]. Musik-, Tanz- und Kunsttherapie, 25, 26 – 33. doi: 10.1026/0933-6885/a000134 First citation in articleLinkGoogle Scholar

  • Vlachopoulos, C., Aggelakas, A., Ioakeimidis, N., Xaplanteris, P., Terentes-Printzios, D., Abdelrasoul, M. ⋯ & Tousoulis, D. (2015). Music decreases aortic stiffness and wave reflections. Atherosclerosis, 240, 184 – 189. doi: 10.1016/j.atherosclerosis.2015.03.010 First citation in articleCrossrefGoogle Scholar

  • Wang, J., Irnaten, M., Neff, R. A., Venkatesan, P., Evans, C., Loewy, A. D., & ⋯ Mendelowitz, D. (2001). Synaptic and neurotransmitter activation of cardiac vagal neurons in the nucleus ambiguus. Annals of the New York Academy of Sciences, 940, 237 – 246. doi: 10.1111/j.1749-6632.2001.tb03680.x First citation in articleCrossrefGoogle Scholar

  • Wang, X., Piñol, R. A., Byrne, P., & Mendelowitz, D. (2014). Optogenetic stimulation of locus ceruleus neurons augments inhibitory transmission to parasympathetic cardiac vagal neurons via activation of brainstem α1 and β1 receptors. The Journal of Neuroscience, 34, 6182 – 6189. doi: 10.1523/JNEUROSCI.5093-13.2014 First citation in articleCrossrefGoogle Scholar

  • Winer, J. A., Chernock, M. L., Larue, D. T., & Cheung, S. W. (2002). Descending projections to the inferior colliculus from the posterior thalamus and the auditory cortex in rat, cat, and monkey. Hearing Research, 168, 181 – 195. First citation in articleCrossrefGoogle Scholar

  • Yang, T. T., Simmons, A. N., Matthews, S. C., Tapert, S. F., Bischoff-Grethe, A., Frank, G. K., & ⋯ Paulus, M. P. (2007). Increased amygdala activation is related to heart rate during emotion processing in adolescent subjects. Neuroscience Letters, 428, 109 – 114. doi: 10.1016/j.neulet.2007.09.039 First citation in articleCrossrefGoogle Scholar

  • Yao, S. T., Finkelstein, D. I., & Lawrence, A. J. (1999). Nitrergic stimulation of the locus coeruleus modulates blood pressure and heart rate in the anaesthetized rat. Neuroscience, 91, 621 – 629. First citation in articleCrossrefGoogle Scholar

  • Zink, C. F., Stein, J. L., Kempf, L., Hakimi, S., & Meyer-Lindenberg, A. (2010). Vasopressin modulates medial prefrontal cortex-amygdala circuitry during emotion processing in humans. The Journal of Neuroscience, 30, 7017 – 7022. doi: 10.1523/JNEUROSCI.4899-09.2010 First citation in articleCrossrefGoogle Scholar