Skip to main content
Studie

F(r)ische fürs Gehirn

Eine Pilotstudie zur Wirkung von Omega-3-Fettsäuren auf kognitive, emotionale und soziale Verhaltensparameter bei Kindergartenkindern

Published Online:https://doi.org/10.1026/0942-5403/a000164

Metaanalysen zeigen, dass die Verabreichung von Omega-3-Fettsäuren zu einer geringfügigen Reduktion der Aufmerksamkeitsdefizit-/Hyperaktivitätssymptomatik bei Kindern führt. Für eine positive Wirkung von Omega-3 auf emotionale und kognitive Funktionen bei gesunden Kindern gibt es bisher kaum Belege. Im Rahmen dieser Studie wurde die Wirksamkeit einer Nahrungsergänzung bei 70 Kindergartenkindern im Alter von drei bis sechs Jahren überprüft. Die kognitive Leistungsfähigkeit der Kinder (z. B. das Gedächtnis) wurde getestet und das Verhalten (z. B. Hyperaktivität, Ängstlichkeit) wurde durch Eltern sowie Kindergartenpädagoginnen eingestuft. Die Kinder wurden zufällig einer Therapie- oder Wartelistengruppe zugeteilt. Die Therapiegruppe erhielt acht Wochen lang täglich 800 mg Omega-3. Danach wurde die psychologische Testung wiederholt. Die Wartegruppe erhielt das Präparat nach der zweiten Testung. Aufgrund der Nahrungsergänzung mit Omega-3 zeigte sich eine Verbesserung kognitiver Funktionen (Gedächtnis, räumliches Denken), während das sozio-emotionale Verhalten unverändert blieb. In zukünftigen Studien sollten die Effekte an größeren Stichproben, sowie mittels neurobiologischer Parameter untermauert werden.


Effects of Omega-3 Fatty Acids on Cognitive, Emotional, and Social Behavioral Parameters in Kindergarten Children: A Pilot Study

Meta-analyses demonstrate that supplementation with omega-3 fatty acids leads to a small reduction of attention deficit hyperactivity symptoms in children. However, there are only few reports on the positive effects of omega-3 supplementation on affective and cognitive functions in healthy children. In this investigation, the effectiveness of supplementation was studied in a group of 70 kindergarten children aged 3 – 6 years. The children’s cognitive performance (e. g., memory) was tested and their parents and kindergarten teachers rated social and emotional parameters (e. g., hyperactivity, anxiety). Children were randomly assigned to either a therapy or a waiting-list group. The therapy group received a daily dose of 800 mg omega-3 for 8 weeks. The diagnostic session was then repeated. The waiting-list group received the supplement after the second testing. Supplementation with omega-3 resulted in enhanced cognitive performance (memory, spatial sense), whereas socioemotional parameters remained unchanged. Future investigations should analyze the effects in bigger samples and assess neurobiological parameters.

Literatur

  • Amminger, G. P., Berger, G. E., Schäfer, M. R., Klier, C., Friedrich, M. H. & Feucht, M. (2007). Omega-3 fatty acids supplementation in children with autism: A double-blind randomized, placebo-controlled pilot study. Biological Psychiatry, 61, 551 – 553. First citation in articleCrossrefGoogle Scholar

  • Amminger, G. P., Schäfer, M. R., Papageorgiou, K., Klier, C. M., Cotton, S. M., Harrigan, S. M., Mackinnon, A., McGorry, P. D. et al. (2010). Long-chain ω-3 fatty acids for indicated prevention of psychotic disorders: A randomized, placebo-controlled trial. Archives of General Psychiatry, 67, 146 – 154. First citation in articleCrossrefGoogle Scholar

  • Appleton, K. M., Rogers, P. J. & Ness, A. R. (2010). Updated systematic review and meta-analysis of the effects of n-3 long-chain polyunsaturated fatty acids on depressed mood. The American Journal of Clinical Nutrition, 91, 757 – 770. First citation in articleCrossrefGoogle Scholar

  • Arbeitsgruppe Deutsche Child Behavior Checklist (1998). Elternfragebogen über das Verhalten von Kindern und Jugendlichen: Deutsche Bearbeitung der Child Behavior Checklist (CBCL/4 – 18). Einführung und Anleitung zur Handauswertung. Köln: Autor. First citation in articleGoogle Scholar

  • Bahri, D., Gusko, M., Hamm, M., Kasper, H., Klöhr, H.-U., Neuberger, D. & Singer, P. (2002). Bedeutung und empfehlenswerte Höhe der Zufuhr langkettiger Omega-3-Fettsäuren–Ein Konsensus-Statement des Arbeitskreises Omega-3. Ernährungs-Umschau, 49, 94 – 98. First citation in articleGoogle Scholar

  • Bloch, M. H. & Qawasmi, A. (2011). Omega-3 fatty acid supplementation for the treatment of children with attention-deficit/hyperactivity disorder symptomatology: Systematic review and meta-analysis. Journal of the American Academy of Child & Adolescent Psychiatry, 50, 991 – 1000. First citation in articleCrossrefGoogle Scholar

  • Chalon, S. (2006). Omega-3 fatty acids and monoamine neurotransmission. Prostaglandins, Leukotrienes and Essential Fatty Acids, 75, 259 – 269. First citation in articleCrossrefGoogle Scholar

  • Chung, W.-L., Chen, J.-J. & Su, H.-M. (2008). Fish oil supplementation of control and (n-3) fatty acid-deficient male rats enhances reference and working memory performance and increases brain regional docosahexaenoic acid levels. The Journal of Nutrition, 138, 1165 – 1171. First citation in articleCrossrefGoogle Scholar

  • Horrobin, D. F., Glen, A. I. & Hudson, C. J. (1995). Possible relevance of phospholipid abnormalities and genetic interactions in psychiatric disorders: the relationship between dyslexia and schizophrenia. Medical Hypotheses, 45, 605 – 613. First citation in articleCrossrefGoogle Scholar

  • Johnson, M., Ostlund, S., Fransson, G., Kadesjö, B. & Gillberg, C. (2009). Omega-3/omega-6 fatty acids for attention deficit hyperactivity disorder: A randomized placebo-controlled trial in children and adolescents. Journal of Attention Disorders, 12, 394 – 401. First citation in articleCrossrefGoogle Scholar

  • Kastner-Koller, U. & Deimann, P. (2012). WET–Wiener Entwicklungstest: Ein Verfahren zur Erfassung des allgemeinen Entwicklungsstandes bei Kindern von 3 bis 6 Jahren (3. Aufl.). Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Kiecolt-Glaser, J. K., Belury, M. A., Andridge, R., Malarkey, W. B. & Glaser, R. (2011). Omega-3 supplementation lowers inflammation and anxiety in medical students: A randomized controlled trial. Brain, Behavior, and Immunity, 25, 1725 – 1734. First citation in articleCrossrefGoogle Scholar

  • Krauss, R. M., Eckel, R. H., Howard, B., Appel, L. J., Daniels, S. R., Deckelbaum, R. J., Erdman, J. W., Kris-Etherton, P. et al. (2000). AHA dietary guidelines: revision 2000: A statement for healthcare professionals from the Nutrition Committee of the American Heart Association. Circulation, 102, 2284 – 2299. First citation in articleCrossrefGoogle Scholar

  • Kuratko, C. N., Barrett, E. C., Nelson, E. B. & Salem, N. (2013). The relationship of docosahexaenoic acid (DHA) with learning and behavior in healthy children: A review. Nutrients, 5, 2777 – 2810. First citation in articleCrossrefGoogle Scholar

  • Lim, S.-Y., Hoshiba, J., Moriguchi, T. & Salem, N. (2005). N-3 fatty acid deficiency induced by a modified artificial rearing method leads to poorer performance in spatial learning tasks. Pediatric Research, 58, 741 – 748. First citation in articleCrossrefGoogle Scholar

  • Luchtman, D. W. & Song, C. (2013). Cognitive enhancement by omega-3 fatty acids from child-hood to old age: Findings from animal and clinical studies. Neuropharmacology 64, 550 – 565. First citation in articleCrossrefGoogle Scholar

  • Martins, J. G. (2009). EPA but not DHA appears to be responsible for the efficacy of omega-3 long chain polyunsaturated fatty acid supplementation in depression: evidence from a meta-analysis of randomized controlled trials. Journal of the American College of Nutrition, 28, 525 – 542. First citation in articleCrossrefGoogle Scholar

  • McNamara, R. K., Able, J., Jandacek, R., Rider, T., Tso, P., Eliassen, J. C., Alfieri, D., Weber, W. et al. (2010): Docosahexaenoic acid supplementation increases prefrontal cortex activation during sustained attention in healthy boys: A placebo-controlled, dose-ranging, functional magnetic resonance imaging study. American Journal of Clinical Nutrition, 91, 1060 – 1067. First citation in articleCrossrefGoogle Scholar

  • McNamara, R. K. & Carlson, S. E. (2006). Role of omega-3 fatty acids in brain development and function: Potential implications for the pathogenesis and prevention of psychopathology. Prostaglandins, Leukotrienes and Essential Fatty Acids, 75, 329 – 349. First citation in articleCrossrefGoogle Scholar

  • Montgomery, P., Burton, J. R., Sewell, R. P., Spreckelsen, T. F. & Richardson, A. J. (2013). Low blood long chain omega-3 fatty acids in UK children are associated with poor cognitive performance and behavior. A cross-sectional analysis from the DOLAB study. PLoS ONE, 8(6), e66697. First citation in articleCrossrefGoogle Scholar

  • Richardson, A. J. (2004). Long-chain polyunsaturated fatty acids in childhood developmental and psychiatric disorders. Lipids, 39, 1215 – 1222. First citation in articleCrossrefGoogle Scholar

  • Richardson, A. J. & Montgomery, P. (2005). The Oxford-Durham Study: A randomized, controlled trial of dietary supplementation with fatty acids in children with developmental coordination disorder. Pediatrics, 115, 1360 – 1366. First citation in articleCrossrefGoogle Scholar

  • Richardson, A. J. & Puri, B. K. (2002). A randomized double-blind, placebo-controlled study of the effects of supplementation with highly unsaturated fatty acids on ADHD-related symptoms in children with specific learning difficulties. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 26, 233 – 239. First citation in articleCrossrefGoogle Scholar

  • Riediger, N. D., Othman, R. A., Suh, M. & Moghadasian, M. H. (2009). A systemic review of the roles of n-3 fatty acids in health and disease. Journal of the American Dietetic Association, 109, 668 – 679. First citation in articleCrossrefGoogle Scholar

  • Singer, P. & Wirth, M. (2003). Omega-3-Fettsäuren marinen und pflanzlichen Ursprungs: Versuch einer Bilanz. Ernährungs-Umschau, 50, 296 – 306. First citation in articleGoogle Scholar

  • Sinn, N. & Bryan, J. (2007). Effect of supplementation with polyunsaturated fatty acids and micronutrients on learning and behavior problems associated with child ADHD. Journal of Developmental and Behavioral Pediatrics, 28, 82 – 91. First citation in articleCrossrefGoogle Scholar

  • Sinn, N., Bryan, J. & Wilson, C. (2008). Cognitive effects of polyunsaturated fatty acids in children with attention deficit hyperactivity disorder symptoms: A randomised controlled trial. Prostaglandins, Leukotrienes and Essential Fatty Acids, 78, 311 – 326. First citation in articleCrossrefGoogle Scholar

  • Stevens, L. J., Zentall, S. S., Deck, J. L., Abate, M. L., Watkins, B. A., Lipp, S. R. & Burgess, J. R. (1995). Essential fatty acid metabolism in boys with attention-deficit hyperactivity disorder. The American Journal of Clinical Nutrition, 62, 761 – 768. First citation in articleCrossrefGoogle Scholar

  • Su, H. M. (2010). Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance. Journal of Nutritional Biochemistry, 21, 364 – 373. First citation in articleCrossrefGoogle Scholar

  • Vancassel, S., Durand, G., Barthélémy, C., Lejeune, B., Martineau, J., Guilloteau, D., Andrès, C. & Chalon, S. (2001). Plasma fatty acid levels in autistic children. Prostaglandins, Leukotrienes and Essential Fatty Acids, 65, 1 – 7. First citation in articleCrossrefGoogle Scholar

  • Woerner, W., Becker, A., Friedrich, C., Rothenberger, A., Klasen, H. & Goodman, R. (2002). Normierung und Evaluation der deutschen Elternversion des Strengths and Difficulties Questionnaire: Ergebnisse einer repräsentativen Felderhebung. Zeitschrift für Kinder- und Jugendpsychiatrie und Psychotherapie, 30, 105 – 112. First citation in articleLinkGoogle Scholar