Skip to main content
Studie

Vorhersage von kognitiven Fähigkeiten in der WPSSI-IV durch den ET 6-6-R

Published Online:https://doi.org/10.1026/0942-5403/a000253

Zusammenfassung. Das Ziel der Studie ist es die prognostische Validität des ET 6-6-R zu bestimmen. Es sollen die Leistungen in den primären Indizes der WPPSI-IV vorhergesagt werden. Getestet wurden 99 Kinder im Alter von 30 bis 70 Monaten. Der Abstand zwischen den Testungen betrug 8 bis 57 Tage. Die Ergebnisse zeigen, dass der Gesamt-IQ am besten durch die Entwicklungsbereiche Kognition und Sprache vorhergesagt werden kann. Die Regressionsmodelle mit den Kriterien Sprachverständnis und Visuell-Räumlicher Verarbeitung sind ebenfalls zufriedenstellend. Die Vorhersagewerte für das Arbeitsgedächtnis und das Fluide Schlussfolgern fallen sehr gering aus. Es besteht zudem keine Korrelation zwischen der Verarbeitungsgeschwindigkeit der WPPSI-IV und den Entwicklungsbereichen des ET 6-6-R. Die Analysen zeigen, dass der ET 6-6-R eine zufriedenstellende prognostische Validität für einige Indizes der WPPSI-IV aufweist. Für ein umfangreiches kognitives Profil ist es notwendig, eine Intelligenzdiagnostik durchzuführen.


The Prediction of Cognitive Ability in the WPPSI-IV by the ET 6-6-R

Abstract. One quality criterion of development measurements is to predict cognitive performances in tests of intelligence. The first aim of the present study was to evaluate the predictive validity of the ET 6-6-R (Entwiklungstest 6 Monate–6 Jahre – Revision; Development Test for Children Aged From 6 Months to 6 Years – Revision). For this purpose, cognitive performances on the primary indices and the Full Scale IQ of the Wechsler Preschool and Primary Scale of Intelligence – Fourth Edition (WPPSI-IV) were chosen as the variables to be predicted. The second aim of the study was to examine the categorical agreement (below average performance, average performance, above average performance) between ET 6-6-R scores and WPPSI-IV scores. Data of 99 children (49 girls, 50 boys) aged from 30 to 70 months were collected using the ET 6-6-R and the WPPSI-IV. The test interval was 8 – 57 days. To analyze the relationship between development scales of the ET 6–6–R and primary indices as well as Full Scale IQ of the WPPSI-IV, Pearson correlation coefficients were calculated and complemented by a linear regression analysis. Categorical agreement was analyzed using Cohen’s kappa with quadratic weighting. The ET 6–6–R scales for Cognitive and Language development explained 35 % of the variances in the Full Scale IQ. When using Verbal Comprehension and Visual Spatial as criterion variables instead, the regression models clarified 28 % and 26 % of the overall variance. Measures of explained variance for Fluid Reasoning (7 %) and Working Memory (10 %), however, were relatively small. There was no significant correlation between Processing Speed and each of the ET 6-6-R development scales. The categorical agreements between Language development and Verbal Comprehension (κ = .33), Cognitive development and Visual Spatial (κ = .25) as well as Cognitive development and Full Scale IQ (κ = .32) were rather low. Most children showed average and above average performance in both measurements. The categorical agreement on below average performance should be examined in further studies. The results of the present study demonstrated a moderate predictive validity of the ET 6-6-R. In particular, the ET 6-6-R development scales Cognition and Language are considered most suitable for predicting measures of intelligence. However, not all narrow intellectual abilities (Fluid Reasoning, Working Memory, and Processing Speed) can be sufficiently predicted by the ET 6-6-R scales. Consequently, specific measures of intelligence are indispensable whenever explicit profiles are needed to identify strengths and weaknesses of cognitive abilities. Finally, the present findings suggest that diagnostic procedures should always include a comprehensive assessment of specific cognitive abilities

Literatur

  • Altman, D. (1991). Practical Statistics for Medical Research. London: Chapman & Hall. First citation in articleGoogle Scholar

  • Bayley, N. (1993). Bayley Scales of Infant Development – Second Edition (Bayley II). San Antonio, TX: The Psychological Corporation. First citation in articleGoogle Scholar

  • Blanz, B. & Filz, C. (2009). Umschriebene Entwicklungsstörungen (ICD-10: F80–F82). In S. KasperH. -P. VolzHrsg., Psychiatrie und Psychotherapie compact (2., vollst. überarb. Aufl.). Stuttgart: Thieme. First citation in articleGoogle Scholar

  • Bode, M. M., D’Eugenio, D. B., Mettelman, B. B. & Gross, S. J. (2014). Predictive Validity of the Bayley, Third Edition at 2 Years for Intelligence Quotient at 4 Years in Preterm Infants. Journal of Developmental and Behavioral Pediatrics, 35, 570 – 575. First citation in articleCrossrefGoogle Scholar

  • Glaas, A., Rudolph, S., Ludwig, J., Pietzner, D., Lubowicka, M. & Cook, M., et al. (2017). Entwicklungsdiagnostik mit den Bayley Scales of Infant and Toddler Development III. Kinder- und Jugendmedizin, 17, 178 – 184. First citation in articleCrossrefGoogle Scholar

  • Hack, M., Taylor, H. G., Drotar, D., Schluchter, M., Cartar, L. & Wilson-Costello, D., et al. (2005). Poor Predictive Validity of the Bayley Scales of Infant Development for Cognitive Function of Extremely Low Birth Weight Children at School Age. Pediatrics, 116, 333 – 341. First citation in articleCrossrefGoogle Scholar

  • Hernandez, A., Aguilar, C., Paradell, E., Munoz, M. R., Vannier, L. C. & Vallar, F. (2017). The effect of demographic variables on the assessment of cognitive ability. Psicothema, 29, 469 – 474. First citation in articleGoogle Scholar

  • Kastner-Koller, U. & Deimann, P. (2012). Wiener Entwicklungstest (WET) (3., überarb. u. erw. Aufl.). Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Kastner-Koller, U., Deimann, P., Antolovic, A., Heiss, C., Kubinger, K. D. & Neumann, G. (2013). Zur Vorhersage von kognitiven Leistungen im Vorschul- und Grundschulalter. Diagnostica, 59, 202 – 214. First citation in articleLinkGoogle Scholar

  • Kubinger, K. D., Litzenberger, M. & Mrakotsky, C. (2006). Practised intelligence testing based on a modern test conceptualization and its reference to the common intelligence theories. Learning and Individual Differences, 16, 175 – 193. First citation in articleCrossrefGoogle Scholar

  • Macha, T. & Petermann, P. (2013). Objektivität von Entwicklungstests. Diagnostica, 59, 183 – 191. First citation in articleLinkGoogle Scholar

  • Mache, T., Proske, A. & Petermann, F. (2005). Validität von Entwicklungstests. Kindheit und Entwicklung, 14, 150 – 162. First citation in articleLinkGoogle Scholar

  • Michaelis, R., Berger, R., Nennstiel-Ratzel, U. & Krägeloh-Mann, I. (2013). Validierte und teilvalidierte Grenzsteine der Entwicklung. Monatsschrift Kinderheilkunde, 161, 898 – 910. First citation in articleCrossrefGoogle Scholar

  • Molinero, C., Mata, S., Calero, M. D., Garcia-Martin, M. B. & Araque-Cuenca, A. (2015). Usefulness of WISC-IV in Determining Intellectual Giftedness. Spanish Journal of Psychology, 18, puplished online:10. August 2015. First citation in articleGoogle Scholar

  • O’brien, R. M. (2007). A Caution Regarding Rules of Thumb for Variance Inflation Factors. Quality & Quantity, 41, 673 – 690. First citation in articleCrossrefGoogle Scholar

  • Petermann, F. & Daseking, M. (2011). Screening und Schuleingangsdiagnostik. Gesundheitswesen, 73, 635 – 636. First citation in articleCrossrefGoogle Scholar

  • Petermann, F. & Macha, T. (2005). Entwicklungsdiagnostik. Kindheit und Entwicklung, 14, 131 – 139. First citation in articleLinkGoogle Scholar

  • Petermann, F. & Macha, T. (2015). Entwicklungstest für Kinder von 6 Monaten bis 6 Jahren – Revision (ET 6-6-R) (2., korr. Aufl.). Frankfurt: Pearson Assessment. First citation in articleGoogle Scholar

  • Peyre, H., Ramus, F., Melchior, M., Forhan, A., Heude, B. & Gauvrit, N. (2016). Emotional, behavioral and social difficulties among high-IQ children during the preschool period: Results of the EDEN mother–child cohort. Personality and Individual Differences, 94, 366 – 371. First citation in articleCrossrefGoogle Scholar

  • Potharst, E. S., Houtzager, B. A., Van Sonderen, L., Tamminga, P., Kok, J. H. & Last, B. F., et al. (2012). Prediction of cognitive abilities at the age of 5 years using developmental follow-up assessments at the age of 2 and 3 years in very preterm children. Developmental Medicine and Child Neurology, 54, 240 – 246. First citation in articleCrossrefGoogle Scholar

  • Rattay, P., Starker, A., Domanska, O., Butschalowsky, H., Gutsche, J. & Kamtsiuris, P. (2014). Trends in der Inanspruchnahme ambulant-ärztlicher Leistungen im Kindes- und Jugendalter. Bundesgesundheitsblatt – Gesundheitsforschung – Gesundheitsschutz, 57, 878 – 891. First citation in articleCrossrefGoogle Scholar

  • Reuner, G. & Pietz, J. (2006). Entwicklungsdiagnostik im Säuglings- und Kleinkindalter. Monatsschrift Kinderheilkunde, 154, 305 – 313. First citation in articleCrossrefGoogle Scholar

  • Schneider, W., Knopf, M. & Sodian, B. (2009). Development of intelligence and thinking. In W. SchneiderM. BullockEds., Human development from early childhood to early adulthood (pp. 7 – 33). New York, NY: Psychology Press. First citation in articleGoogle Scholar

  • Wechsler, D. (2002). Wechsler Preschool and Primary Scale of Intelligence – Third Edition (WPPSI-III). San Antonio, TX: The Psychological Corporation. First citation in articleGoogle Scholar

  • Wechsler, D. (2018). Wechsler Preschool and Primary Scale of Intelligence – Fourth Edition (Deutsche Bearbeitung von F. Petermann & M. Daseking). Frankfurt a. M.: Pearson Assessment. First citation in articleGoogle Scholar

  • Weltgesundheitsorganisation. (2005). Internationale Klassifikation psychischer Störungen. ICD-10 Kapitel V (F). Klinische diagnostische Leitlinien. Bern: Huber. First citation in articleGoogle Scholar

  • Wong, H. S., Santhakumaran, S., Cowan, F. M. & Modi, N., Medicines for Neonates Investigator Group (2016). Developmental assessments in preterm children: A meta-analysis. Pediatrics, 138, e20160251. First citation in articleCrossrefGoogle Scholar