Skip to main content
Studie

Zum Zusammenhang von motorischer und kognitiver Entwicklung im Vorschulalter

Published Online:https://doi.org/10.1026/0942-5403/a000254

Zusammenfassung. Inwieweit die motorische und kognitive Entwicklung von Kindern miteinander verbunden ist, wird seit langem kontrovers diskutiert. Insbesondere für die frühkindliche Förderung ist es von Bedeutung, das Zusammenspiel beider Entwicklungsbereiche genau zu analysieren, um passgenaue Fördermöglichkeiten zu entwickeln. Ziel dieser Arbeit ist es, den Zusammenhang von motorischen und kognitiven Leistungen zu untersuchen. Es wurden die Testergebnisse von 87 Kindern im Alter von drei bis sechs Jahren im Motoriktest LoMo 3 – 6 mit denen in der WPPSI-IV korreliert. Die Ergebnisse sprechen dafür, dass motorische Leistungen insbesondere mit visuellen Leistungen und der Verarbeitungsgeschwindigkeit assoziiert sind. Ein Subgruppenvergleich zwischen motorisch unterdurchschnittlich, durchschnittlich und überdurchschnittlich entwickelten Kindern zeigt, dass sich diese besonders in den Indizes Visuell-Räumliche Verarbeitung und Verarbeitungsgeschwindigkeit unterscheiden. Programme zur Bewegungsförderung sollten Aspekte der feinmotorischen Koordination, Objektkontrolle sowie der bilateralen Körperkoordination beinhalten, da diese Bereiche motorischer Kompetenz eng mit visuell-räumlichen Funktionen sowie der kognitiven Verarbeitungsgeschwindigkeit in Verbindung gebracht werden.


The Relationship Between Motor and Cognitive Development in Preschool Age

Abstract. The relationship between motor skills and cognitive development is a controversial topic in child development. However, it is particularly important for early childhood education and child care to analyze the connection between the two development areas in more detail. The first aim of this work was to investigate the relationship between motor and cognitive performance in children aged between 3 and 6 years. For this purpose, motor skills were measured by the German movement assessment LoMo 3 – 6. The cognitive performances on the primary indices and the Full Scale IQ of the Wechsler Preschool and Primary Scale of Intelligence – Fourth Edition (WPPSI-IV) were chosen as the variables to be predicted. The second aim of this study was to examine the differences in cognitive performances dependent on motor development. Data of 87 children (41 girls, 46 boys) aged from 37 to 81 months were collected using the LoMo 3 – 6 and the WPPSI-IV. The test interval was 0 – 138 days. If both tests were completed on the same day, the WPPSI-IV was always performed first. To analyze the relationship between motor skills of the LoMo 3 – 6 and primary indices as well as Full Scale IQ of the WPPSI-IV, Pearson correlation coefficients were calculated and complemented by a linear regression analysis. Differences in cognitive performances between the three groups of children with different motor skills (below average motor performance, average motor performance, above average motor performance) were analyzed by pairwise post hoc group comparisons. The total value of the LoMo 3 – 6 explained 19 % of the variances of the index Processing Speed. When using Full Scale IQ and Visual Spatial as criterion variables instead, the regression models clarified 15 % and 13 % of the overall variance. Measures of explained variance for Verbal Comprehension (5 %) and Working Memory (4 %), however, were relatively low. There was no significant correlation between Fluid Reasoning and the total value of the LoMo 3 – 6. The pairwise comparisons between the groups below average motor performance and average motor performance as well as the groups above average motor performance and below average motor performance showed significant differences in Verbal Comprehension, Visual Spatial, Processing Speed, and Full Scale IQ. The results of the present study demonstrate that motor skill programs should include aspects of fine motor coordination, object control, and bilateral body coordination because these motor skills are closely linked to visual–spatial processing speed.

Literatur

  • Ahnert, J., Bös, K. & Schneider, W. (2003). Motorische und kognitive Entwicklung im Vorschul- und Schulalter: Befunde der Münchner Längsschnittstudie LOGIK. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 35, 185 – 199. First citation in articleLinkGoogle Scholar

  • Asonitou, K., Koutsouki, D., Kourtessis, T. & Charitou, S. (2012). Motor and cognitive performance differences between children with and without developmental coordination disorder (DCD). Research in Developmental Disabilties, 33, 996 – 1005. First citation in articleCrossrefGoogle Scholar

  • Blank, R., Smits-Engelsman, B., Polatajko, H. & Wilson, P. (2012). European Academy for Childhood Disability (EACD): Recommendations on the definition, diagnosis and intervention of developmental coordination disorder (long version). Developmental Medicine and Child Neurology, 54, 54 – 93. First citation in articleCrossrefGoogle Scholar

  • Bruininks, R. H. & Bruininks, B. D. (2005). BOT-2: Bruininks-Oseretsky Test of motor proficiency, second edition. Circle Pines, MN: AGS Publishing. First citation in articleGoogle Scholar

  • Cadoret, G., Bigras, N., Duval, S., Lemay, L., Tremblay, T. & Lemire, J. (2018). The mediating role of cognitive ability on the relationship between motor proficiency and early academic achievement in children. Human Movement Science, 57, 149 – 157. First citation in articleCrossrefGoogle Scholar

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences. New York: Erlbaum. First citation in articleGoogle Scholar

  • Daseking, M. & Petermann, F. (2018). Die neuen Wechsler: WPPSI-IV und WISC-V. Kindheit und Entwicklung, 27, 127-132. First citation in articleLinkGoogle Scholar

  • Davis, E. E., Pitchford, N. J. & Limback, E. (2011). The interrelation between cognitive and motor development in typically developing children aged 4 – 11 years is underpinned by visual processing and fine motor control. British Journal of Psychology, 102, 569 – 584. First citation in articleCrossrefGoogle Scholar

  • Davis, E. E., Pitchford, N. J., Jaspan, T., McArthur, D. & Walker, D. (2010). Development of cognitive and motor function following cerebellar tumour injury sustained in early childhood. Cortex, 46, 919 – 932. First citation in articleCrossrefGoogle Scholar

  • Eggert, D. & Schuck, K. D. (1975). Intelligenz, Motorik, und Sozialstatus im Vorschulalter. In H. -J. MüllerR. DeckerF. SchillingHrsg., Motorik im Vorschulalter (S. 67 – 82). Schorndorf: Hofmann. First citation in articleGoogle Scholar

  • Fels, I. M. J. van der, Wierike, S. C. M. te, Hartman, E., Elferink-Gemser, M. T., Smith, J. & Visscher, C. (2015). Journal of Science and Medicine in Sport, 18, 697 – 703. First citation in articleCrossrefGoogle Scholar

  • Jaščenoka, J. & Petermann, F. (2018a). Umschriebene motorische Entwicklungsstörungen (UEMF): Weisen betroffene Kinder spezifische Intelligenzprofile auf? Kindheit und Entwicklung, 27, 14 – 30. First citation in articleLinkGoogle Scholar

  • Jaščenoka, J. & Petermann, F. (2018b). Leistungsinventar zur objektiven Überprüfung der Motorik von 3- bis 6-jährigen (LoMo 3 – 6). Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Jaščenoka, J., Korsch, F., Petermann, F. & Petermann, U. (2015). Kognitive Leistungsprofile von Kindern mit motorischen Entwicklungsstörungen und ADHS im Vorschulalter. Praxis der Kinderpsychologie und Kinderpsychiatrie, 64, 117 – 134. First citation in articleCrossrefGoogle Scholar

  • Jude, N., Hertel, N., Kuger, S. & Sälzer, C. (2016). Die Lernumgebung in der Familie und die elterliche Unterstützung. In K. ReissC. SälzerA. Schiepe-TiskaE. KliemeO. KöllerHrsg., PISA 2015 (S. 349 – 373). Münster: Waxmann. First citation in articleGoogle Scholar

  • Kastner, J., Lipsius, M., Hecking, M., Petermann, F., Petermann, U., Mayer, H. & Springer, S. (2011). Kognitive Leistungsprofile motorisch und sprachentwicklungsverzögerter Kinder – ein Beitrag zur klinischen Validierung der WPPSI-III. Kindheit und Entwicklung, 20, 173 – 185. First citation in articleLinkGoogle Scholar

  • Kastner, J. & Petermann, F. (2010). Entwicklungsbedingte Koordinationsstörung: Zum Zusammenhang von motorischen und kognitiven Defiziten. Klinische Pädiatrie, 222, 26 – 34. First citation in articleCrossrefGoogle Scholar

  • Kaufman, A. S. & Kaufman, N. L. (2004). Kaufman Assessment Battery for Children: Second Edition (KABC 2). Circle Pines, MN: AGS Publishing. First citation in articleGoogle Scholar

  • Leonard, H. C., Bernardi, M., Hill, E. L. & Henry, L. A. (2015). Executive functioning, motor difficulties, and developmental coordination disorder. Developmental Neuropsychology, 40, 201 – 215. First citation in articleCrossrefGoogle Scholar

  • Libertus, K. & Hauf, P. (2017). Editorial: Motor skills and their foundational role for perceptual, social, and cognitive development. Frontiers in Psychology, 8, 301. First citation in articleCrossrefGoogle Scholar

  • Livesey, D., Keen, J., Rouse, J. & White, F. (2006). The relationship between measures of executive function, motor performance and externalising behaviour in 5- and 6-year-old children. Human Movement Science, 25, 50 – 64. First citation in articleCrossrefGoogle Scholar

  • Loh, P. R., Pick, J. P. & Barrett, N. C. (2011). Comorbid ADHD and DCD: Examining cognitive functions using the WISC-IV. Research in Developmental Disabilities, 32, 1260 – 1269. First citation in articleCrossrefGoogle Scholar

  • OECD. (2004a). Learning for tomorrow’s world. First results from PISA 2003. Paris: OECD. First citation in articleCrossrefGoogle Scholar

  • OECD. (2004b). Starting strong: Early childhood education and care. Paris: OECD. First citation in articleGoogle Scholar

  • Payr, A. M. (2011). Der Zusammenhang zwischen der motorischen und kognitiven Entwicklung im Kindesalter. Dissertation: Universität Konstanz. First citation in articleGoogle Scholar

  • Petermann, F., Ricken, G., Fritz, A., Schuck, K. D. & Preuß, U. (Hrsg.). (2014). Wechsler Preschool and Primary Scale of Intelligence-III (WPPSI-III) – Deutsche Version (3., überarb. u. erw. Auflg.). Frankfurt a. M.: Pearson Assessment. First citation in articleGoogle Scholar

  • Petermann, F. & Petermann, U. (Hrsg.). (2011). Wechsler Intelligence Scale for Children-IV (WISC-IV) – Deutsche Version. Frankfurt a. M.: Pearson Assessment. First citation in articleGoogle Scholar

  • Rigoli, D., Piek, J. P., Kane, R. & Oosterlaan, J. (2012a). Motor coordination, working memory, and academic achievement in a normative adolescent sample: Testing a mediation model. Archives of Clinical Neuropsychology, 27, 766 – 780. First citation in articleCrossrefGoogle Scholar

  • Rigoli, D., Piek, J. P., Kane, R. & Oosterlaan, J. (2012b). An examination of the relationship between motor coordination and executive functions in adolescents. Developmental Medicine and Child Neurology, 54, 1025 – 1031. First citation in articleCrossrefGoogle Scholar

  • Roebers, C. M. & Kauer, M. (2009). Motor and cognitive control in a normative sample of 7-year-olds. Developmental Science, 12, 175 – 181. First citation in articleCrossrefGoogle Scholar

  • Sumner, E., Pratt, M. L. & Hill, E. L. (2016). Examining the cognitive profile of children with Developmental Coordination Disorder. Research in Developmental Disabilities, 56, 10 – 17. First citation in articleCrossrefGoogle Scholar

  • Wassenberg, R., Feron, F. J. M., Kessels, A. G. H., Hendriksen, J. G. M., Kalff, A. C. & Kroes, M., et al. (2005). Relation between cognitive and motor performance in 5- to 6-year old children: Results from a large-scale cross-sectional study. Child Development, 76, 1092 – 1103. First citation in articleCrossrefGoogle Scholar

  • Wechsler, D. (2003). Wechsler Intelligence Scale for Children – Fourth Edition (WISC-IV). San Antonio: Harcourt Assessment. First citation in articleGoogle Scholar

  • Wechsler, D. (2018). Wechsler Preschool and Primary Scale of Intelligence – Fourth Edition (WPPSI-IV) (dt. Bearbeitung von F. Petermann & M. Daseking). Frankfurt a. M.: Pearson Assessment. First citation in articleGoogle Scholar

  • Wilson, P. H., Ruddock, S., Smits-Engelsman, B., Polatajko, H. & Blank, R. (2013). Understanding performance deficits in developmental coordination disorder: A meta-analysis of recent research. Developmental Medicine and Child Neurology, 55, 217 – 228. First citation in articleCrossrefGoogle Scholar

  • Woll, A., Albrecht, C. & Worth, A. (2017). Motorik Modul (MoMo) – das Modul zur Erfassung der motorischen Leistungsfähigkeit und der körperlich sportlichen Aktivität in KIGGS Welle 2. Journal of Health Monitoring, 2 (S3), 66 – 73. First citation in articleGoogle Scholar

  • Zimmer, R. & Volkamer, M. (1984). Motoriktest für 4 – 6-jährige Kinder (MOT 4 – 6). Weinheim: Beltz. First citation in articleGoogle Scholar