Skip to main content
Studie

Zum Zusammenhang von Verhaltensauffälligkeiten in exekutiven Funktionen und Intelligenzleistungen in der WPPSI-IV

Published Online:https://doi.org/10.1026/0942-5403/a000255

Zusammenfassung. Der BRIEF-P basiert auf alltagsnahen kindlichen Verhaltensweisen im Bereich der exekutiven Funktionen, die durch Bezugspersonen beurteilt werden. Allgemein gilt dieses Verfahren als ökonomisch einsetzbares und ökologisch valides Instrument. In der vorliegenden Studie wurde untersucht, ob und welcher Zusammenhang zwischen exekutiven Funktionen (EF) und Intelligenz im Kindergartenalter besteht. Für eine Stichprobe von N = 169 Kindern im Alter von 2;6 bis 6;11 Jahren wurden Daten aus einem Elternfragebogen zum familiären Hintergrund, zu den EF des Kindes (BRIEF-P) und aus der Wechsler Preschool and Primary Scale of Intelligence – Fourth Edition (WPPSI-IV) analysiert. Es wurden Häufigkeitsanalysen zu den Defiziten in den EF, Korrelationen und Regressionsanalysen berechnet. Sowohl die primäre Skala Arbeitsgedächtnis (Updating) als auch der Gesamtwert EF des BRIEF-P tragen zur Vorhersage der Intelligenz (Gesamt-IQ) bei. Die Skala Inhibition und der Gesamtwert EF des BRIEF-P korrelieren signifikant mit drei der fünf primären und allen vier sekundären Indizes der WPPSI-IV. Aus der Perspektive der WPPSI-IV-Indizes sticht der Index Fluides Schlussfolgern hervor, mit dem fast alle erfassten EF-Bereiche des BRIEF-P korrelieren. Die Indizes der WPPSI-IV werden hinsichtlich ihrer Nähe zur fluiden Intelligenz diskutiert. Die EF spielen bereits im Vorschulalter eine wichtige Rolle für die kognitiven Leistungen. Die Ergebnisse werden im Zusammenhang von Sprachauffälligkeiten und ADHS betrachtet. Förder- und Interventionsprogramme sollten bereits in einem frühen Alter etabliert werden, um die Voraussetzungen für schulisches Lernen zu verbessern.


The Relationship Between Behavioral Problems in Executive Functions and Intelligence Examined With WPPSI-IV

Abstract. The BRIEF-P is based on everyday child behaviors in the field of executive functions (EF), which are assessed by caregivers. In general, this inventory is considered an economic and ecologically valid instrument. But can cognitive performance in the WPPSI-IV be reflected on the basis of these impairments of EF? And how high is the predictive value for the prediction of intelligence? The present study investigated the relationship between EF and intelligence in kindergarten age. For a sample of N = 169 children aged 2.6 – 6.11 years, data regarding the family background were obtained through a parent questionnaire. Furthermore, data from the child’s EF (BRIEF-P) and the Wechsler Preschool and Primary Scale of Intelligence – Fourth Edition (WPPSI-IV) were analyzed. Analyses of frequency of EF deficits as well as correlations and regression analyses were performed. Both the primary scale working memory (updating) and the total value of the BRIEF-P contribute significantly to the prediction of intelligence (overall IQ). The scale inhibition and the total value of EF abnormalities assessed with the BRIEF-P correlate significantly with three of the five primary and all four secondary indices of the WPPSI-IV. No relation was found between the scales attention change and planning and organizing of the BRIEF-P and also not for all primary and secondary indices of the WPPSI-IV. Surprisingly, no significant correlation was found between the working memory scale of the BRIEF-P and the index working memory of the WPPSI-IV. Differences between the two constructs of working memory of the different inventories are addressed. Regarding the WPPSI-IV indices, the index fluid reasoning shows remarkable correlation with almost all EF areas of the BRIEF-P. The WPPSI-IV indices are discussed in terms of their correlations with fluid intelligence. In addition, the question arises as to how the three factors of the executive functions – updating, shifting, and inhibition – can be assessed in preschoolers. The EF play an important role in cognitive performance as early as preschool age. The results are considered in the context of speech disorders and ADHD, which are associated with direct and secondary impairments in educational development. Support and intervention programs should be established at an early age to improve the conditions for learning in school

Literatur

  • Aken, L., Kessels, R. P. C., Wingbermühle, P. A. M., Veld, W. M. & Egger, J. I. M. (2016). Fluid intelligence and executive functioning more alike than different? Acta Neuropsychiatrica, 28, 31 – 37. First citation in articleCrossrefGoogle Scholar

  • Ardila, A., Pineda, D. & Rosselli, M. (2000). Correlation between intelligence test scores and executive function measures. Archives of Clinical Neuropsychology, 15, 31 – 36. First citation in articleCrossrefGoogle Scholar

  • Baddeley, A. (1996). Exploring the central executive. Quarterly Journal of Experimental Psychology Series a Human Experimental Psychology, 49, 5 – 28. First citation in articleCrossrefGoogle Scholar

  • Banich, M. T. (2009). Executive Function: The search for an integrated account. Current Directions in Psychological Science, 18, 89 – 94. First citation in articleCrossrefGoogle Scholar

  • Bastian, L., Reichenbach, K., Helbig, L., Lenz, K., Rohrbach, S. & Pollex-Fischer, D., et al. (2018). Auswirkungen von Bilingualität auf kognitive Funktionen im Vorschulalter. Praxis der Kinderpsychologie und Kinderpsychiatrie, 67, 2 – 17. First citation in articleCrossrefGoogle Scholar

  • Benedek, M., Jauk, E., Sommer, M., Arendasy, M. & Neubauer, A. C. (2014). Intelligence, creativity, and cognitive control: The common and differential involvement of executive functions in intelligence and creativity. Intelligence, 46, 73 – 83. First citation in articleCrossrefGoogle Scholar

  • Blair, C. & Razza, R. P. (2007). Relating effortful control, executive function, and false belief understanding to emerging math and literacy ability in kindergarten. Child Development, 78, 647 – 663. First citation in articleCrossrefGoogle Scholar

  • Brydges, C. R., Reid, C. L., Fox, A. M. & Anderson, M. (2012). A unitary executive function predicts intelligence in children. Intelligence, 40, 458 – 469. First citation in articleCrossrefGoogle Scholar

  • Carlson, S. M. (2005) Developmentally sensitive measures of executive function in preschool children. Developmental Neuropsychology, 28, 595 – 616. First citation in articleCrossrefGoogle Scholar

  • Cattell, R. (1967). The theory of fluid and crystallized intelligence checked at the 5 – 6 year-old level. British Journal of Educational Psychology, 37, 209 – 224. First citation in articleCrossrefGoogle Scholar

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, N.J: Erlbaum. First citation in articleGoogle Scholar

  • Damasio, A. R. (1994). Descartes’ Irrtum: Fühlen, Denken und das menschliche Gehirn. München: List. First citation in articleGoogle Scholar

  • Danielsson, J., Boer, M. de, Petermann, F. & Daseking, M. (2009). Nikotinexposition in der Schwangerschaft – Auswirkungen auf die kognitive Entwicklung im Kindergartenalter. Geburtshilfe und Frauenheilkunde, 69, 692 – 697. First citation in articleCrossrefGoogle Scholar

  • Daseking, M., Melzer, J., Rißling, J. & Petermann, F. (2015). Zusammenhang zwischen Intelligenz und exekutiven Funktionen. Gesundheitswesen, 77, 814 – 819. First citation in articleCrossrefGoogle Scholar

  • Daseking, M. & Petermann, F. (2013a). Analyse von Querschnittsdaten zur Intelligenzentwicklung im Erwachsenenalter: Eine Studie zur deutschsprachigen Version der WAIS-IV. Zeitschrift für Neuropsychologie, 24, 149 – 160. First citation in articleLinkGoogle Scholar

  • Daseking, M. & Petermann, F. (2013b). BRIEF-P: Verhaltensinventar zur Beurteilung exekutiver Funktionen für das Kindergartenalter (deutschsprachige Adaption des Behavior Rating Inventory of Executive Function – Preschool Version (BRIEF-P) von Gerard A. Gioia, Kimberly Andrews Espy und Peter K. Isquith). Bern: Huber. First citation in articleGoogle Scholar

  • Daseking, M., Petermann, F., Tischler, T. & Waldmann, H.-C. (2015). Smoking during pregnancy is a risk factor for executive function deficits in preschool-aged children. Geburtshilfe und Frauenheilkunde, 75, 64 – 71. First citation in articleCrossrefGoogle Scholar

  • Diamond A. (2002). Normal development of prefrontal cortex from birth to young adulthood: Cognitive functions, anatomy, and biochemistry. In D. T. StussR. T. KnightEds., Principles of frontal lobe function (pp. 466 – 503). London: Oxford University Press. First citation in articleGoogle Scholar

  • Dilling, H. & Freyberger, H. J. & WHO (2017). Taschenführer zur ICD-10-Klassifikation psychischer Störungen. Mit Glossar und diagnostischen Kriterien sowie Referenztabellen ICD-10 vs. ICD-9 und ICD-10 vs. DSM-IV-TR (nach dem englischsprachigen Pocket Guide von J. E. Cooper). Bern: Hogrefe. First citation in articleGoogle Scholar

  • Duncan, J., Emslie, H., Williams, P., Johnson, R. & Freer, C. (1996). Intelligence and the frontal lobe: The organization of goal-directed behavior. Cognitive Psychology, 30, 257 – 303. First citation in articleCrossrefGoogle Scholar

  • Duncan, J. & Owen, A. M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences, 23, 475 – 483. First citation in articleCrossrefGoogle Scholar

  • Engle, R. W., Tuholski, S. W., Laughlin, J. E. & Conway, A. R. A. (1999). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. Journal of Experimental Psychology: General, 128, 309 – 331. First citation in articleCrossrefGoogle Scholar

  • Eid, M., Gollwitzer, M. & Schmitt, M. (2011). Statistik und Forschungsmethoden. Weinheim: Beltz. First citation in articleGoogle Scholar

  • Friedman, N. P. & Miyake, A. (2017). Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex, 86, 186 – 204. First citation in articleCrossrefGoogle Scholar

  • Friedman, N. P., Miyake, A., Corley, R. P., Young, S. E., DeFries, J. C. & Hewitt, J. K. (2006). Not all executive functions are related to intelligence. Association for Psychological Science, 2, 172 – 179. First citation in articleCrossrefGoogle Scholar

  • Gawrilow, C., Petermann, F. & Schuchardt, K. (2013). ADHS im Vorschulalter. Kindheit und Entwicklung, 22, 189 – 192. First citation in articleLinkGoogle Scholar

  • Healey, D. M., Gopin, C. B., Grossman, B. R., Campbell, S. B. & Halperin, J. M. (2010). Mother-child dyadic synchrony is associated with better functioning in hyperactive/inattentive preschool children. Journal of Child Psychology and Psychiatry, 51, 1058 – 1066. First citation in articleCrossrefGoogle Scholar

  • Horn, J. L. & Cattell, R. B. (1967). Age differences in fluid and crystallized intelligence. Acta Psychologica, 26, 107 – 129. First citation in articleCrossrefGoogle Scholar

  • Katarzyna, J., Altarelli, I., Monzalvo, K., Fluss. J., Dubois, J., Billard. C., Dehaene-Lambertz, G. & Ramus, F. (2012). The influence of socioeconomic status on children’s brain structure. Plos One, 8, e42486. First citation in articleGoogle Scholar

  • Kray, J., Eber, J. & Karbach, J. (2008). Verbal self-instructions in task switching: A compensatory tool for action-control deficits in childhood and old age? Developmental Science, 11, 223 – 236. First citation in articleCrossrefGoogle Scholar

  • Lawson, G. M., Hook, C. J. & Farah, M. J. (2018). A meta-analysis of the relationship between socioeconomic status and executive function performance among children. Developmental Science, 21, e12529. First citation in articleCrossrefGoogle Scholar

  • Lenhard, W. & Lenhard, A. (2014). Hypothesis tests for comparing correlations. Retrieved from https://www.psychometrica.de/correlation.html [03. 04. 2018] First citation in articleGoogle Scholar

  • Lehto, J. E., Juujärvi, P., Kooistra, L. & Pulkkinen, L. (2003). Dimensions of executive functioning: Evidence from children. The British Journal of Developmental Psychology, 21, 59 – 80. First citation in articleCrossrefGoogle Scholar

  • Lucassen, N., Kok, R., Bakermans-Kranenburg, M. J., Van IJzendoorn , M. H., Jaddoe, V. W. V. & Hofman, A., et al. (2015). Executive functions in early childhood: The role of maternal and paternal parenting practices. British Journal of Developmental Psychology, 33, 489 – 505. First citation in articleCrossrefGoogle Scholar

  • Miyake, A. & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions: Four general conclusions. Current Directions in Psychological Science, 21, 8 – 14. First citation in articleCrossrefGoogle Scholar

  • Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A. & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobes” tasks: A latent variable analysis. Cognitive Psychology, 41, 49 – 100. First citation in articleCrossrefGoogle Scholar

  • Petermann, U., Petermann, F. & Franz, M. (2010). Erziehungskompetenz und Elterntraining. Kindheit und Entwicklung, 19, 67 – 71. First citation in articleLinkGoogle Scholar

  • Piekny, J., Thomsen, T., Schuchardt, K., Lessing, N., Greve, W. & Mähler, C. (2017). Kognitive Kompetenzen und kognitive Bewältigungsstrategien im Vor- und Grundschulalter: Bedingungen, Wechselwirkungen und Entwicklungsverläufe. Kindheit und Entwicklung, 26, 28 – 38. First citation in articleLinkGoogle Scholar

  • Rahbari, N. & Vaillancourt, T. (2015). Longitudinal associations between executive functions and intelligence in preschool children: A multi-method, multi-informant study. Canadian Journal of School Psychology, 30, 255 – 272. First citation in articleCrossrefGoogle Scholar

  • Redick, T. S., Unsworth, N., Kelly, A. J. & Engle, R. W. (2012). Faster, smarter? Working memory capacity and perceptual speed in relation to fluid intelligence. Journal of Cognitive Psychology, 24, 844 – 854. First citation in articleCrossrefGoogle Scholar

  • Repovš, G. & Baddeley, A. D. (2006). The multi-component model of working memory: Explorations in experimental cognitive psychology. Neuroscience, 139, 5 – 21. First citation in articleCrossrefGoogle Scholar

  • Röthlisberger, M., Neuenschwander, R., Michel, E. & Roebers, C. M. (2010). Exekutive Funktionen: Zugrundeliegende kognitive Prozesse und deren Korrelate bei Kindern im späten Vorschulalter. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 42, 99 – 110. First citation in articleLinkGoogle Scholar

  • Salthouse, T. A., Fristoe, N., McGuthry, K. E. & Hambrick, D. Z. (1998). Relation of task switching to speed, age, and fluid intelligence. Psychology and Aging, 13, 445 – 461. First citation in articleCrossrefGoogle Scholar

  • Shallice, T. & Burgess, P. W. (1991). Deficits in strategy application following frontal-lobe damage in man. Brain, 114, 727 – 741. First citation in articleCrossrefGoogle Scholar

  • Stephens, R. L., Langworthy, B., Short, S. J., Goldman, B. D., Girault, J. B., Fine, J. P., Reznick, J. S. & Gilmore, J. H. (2018). Verbal and nonverbal predictors of executive function in early childhood. Journal of Cognition and Development, 2, 1 – 19. First citation in articleGoogle Scholar

  • Unsworth, N., Fukuda, K., Awh, E. & Vogel, E. K. (2014). Working memory and fluid intelligence: Capacity, attention control, and secondary memory retrieval. Cognitive Psychology, 71, 1 – 26. First citation in articleCrossrefGoogle Scholar

  • Vallotton, C. & Ayoub, C. (2011). Use your words: The role of language in the development of toddlers’ self-regulation. Early Childhood Research Quarterly, 26, 169 – 181. First citation in articleCrossrefGoogle Scholar

  • Vygotskij, L. S. (1993). Denken und Sprechen. Frankfurt a. M.: Fischer. First citation in articleGoogle Scholar

  • Wechsler, D. (2012). Wechsler Preschool and Primary Scale of Intelligence – Fourth Edition (WPPSI-IV). San Antonio, TX: Pearson. First citation in articleGoogle Scholar

  • Wechsler, D. (2018). Wechsler Preschool and Primary Scale of Intelligence – Fourth Edition (WPPSI-IV) (dt. Bearbeitung F. Petermann & M. Daseking). Frankfurt a. M.: Pearson Assessment. First citation in articleGoogle Scholar

  • Weiland, C., Barata, M. C. & Yoshikawa, H. (2014). The co-occurring development of executive function skills and receptive vocabulary in preschool-aged children: A look at the direction of the developmental pathways. Infant and Child Development, 23, 4 – 21. First citation in articleCrossrefGoogle Scholar

  • Willoughby, M. T., Blair, C. B., Wirth, R. J. & Greenberg, M. (2010). The measurement of executive function at age 3 years: Psychometric properties and criterion validity of a new battery of tasks. Psychological Assessment, 22, 306 – 317. First citation in articleCrossrefGoogle Scholar

  • Willoughby, M. T., Magnus, B., Vernon-Feagans, L., Blair, C. B., F. L. P. I., Cox, M., Burchinal, P. & Crnic, K. (2017). Developmental delays in executive function from 3 to 5 years of age predict kindergarten academic readiness. Journal of Learning Disabilities, 50, 359 – 372. First citation in articleCrossrefGoogle Scholar

  • Zenglein, Y., Beyer, A., Freitag, C. M. & Schwenck, C. (2013). ADHS im Vorschulalter: Subgruppen, Diagnostik und gezielte Therapieansätze. Kindheit und Entwicklung, 22,193 – 200. First citation in articleLinkGoogle Scholar

  • Zelazo, P. D., Blair, C. & Willoughby, M. T., National Center for Education Research (U.S.), Institute of Education Sciences (U.S.) (2017). Executive function: implications for education. Washington, DC: U.S. Department of Education. First citation in articleGoogle Scholar