Skip to main content
Published Online:https://doi.org/10.1026/1612-5010/a000086

Mit zunehmendem Alter kommt es zu einem Abbau von Gehirnmasse. Es liegen allerdings zunehmend Hinweise darauf vor, dass moderate körperliche Aktivität vor diesem Prozess schützen bzw. diesem sogar entgegenwirken kann. Diese Forschungsrichtung zeigt, dass sich die Effekte von körperlicher Aktivität mit einiger Spezifizität nachweisen lassen und sich mit der höchsten Konsistenz und am stärksten im präfrontalen Kortex und dem Hippocampus ereignen. Analysen haben gezeigt, dass der Zusammenhang zwischen körperlicher Aktivität und besseren Leistungen in kognitiven Aufgaben durch die Größenveränderung von bestimmten Gehirnarealen moderiert wird. Des Weiteren konnten im Rahmen von funktionellen Bildgebungsstudien (funktionelle Magnetresonanztomografie; kurz: fMRT) ähnlich positive Effekte von Training auf Aktivierungsmuster im Gehirn gefunden werden. Körperliche Aktivität fördert darüber hinaus auch die Konnektivität zwischen frontalen Arealen und dem Hippocampus. So konnte beispielsweise gezeigt werden, dass Altersunterschiede in Bezug auf die Konnektivität dieser einzelnen Hirnareale nach einem 1-jährigen körperlichen Training ausgeglichen werden konnten. Bislang ist allerdings noch eine Reihe von Fragen in Bezug auf die Wirkungsweise von körperlichem Training (Dauer, Häufigkeit, Intensität, Art) sowie weiteren moderierenden Faktoren auf die kognitive Leistungsfähigkeit und Gehirngesundheit offen.


The effects of age and training on cognitive health

The brain typically deteriorates in later life, but there is emerging evidence that participation in moderate intensity physical activity can both protect and treat volumetric losses. This research suggests that the effects of physical activity on the brain have some degree of specificity with the effects occurring most consistently and robustly in the prefrontal cortex and hippocampus. Analyses have reported that changes in the size of certain brain areas mediate the association between physical activity and better performance on cognitive tasks. In addition, functional magnetic resonance imaging studies have shown similar beneficial effects of exercise on task-evoked brain patterns as well as improvements in the degree of connectivity of frontal and hippocampal circuits, such that age differences in connectivity are eliminated after 1-year of exercise. Yet, despite these findings there remain many unanswered questions related to the dose of exercise, the moderators of exercise, and the types of exercise that influence brain health in late life.

Literatur

  • Burdette, J. H. , Laurienti, P. J. , Espeland, M. A. , Morgan, A. , Telesford, Q. , Vechlekar, C. D. et al. (2010). Using network science to evaluate exercise-associated brain changes in older adults. Frontiers in Aging Neuroscience, 2, 23. First citation in articleGoogle Scholar

  • Colcombe, S. J. , Erickson, K. I. , Raz, N. , Webb, A. G. , Cohen, N. J. , McAuley, E. et al. (2003). Aerobic fitness reduces brain tissue loss in aging humans. The Journals of Gerontology. Series A, Biological sciences and medical science, 58, 176 – 180. First citation in articleCrossrefGoogle Scholar

  • Colcombe, S. J. , Erickson, K. I. , Scalf, P. E. , Kim, J. S. , Prakash, R. , McAuley, E. et al. (2006). Aerobic exercise training increases brain volume in aging humans. The Journals of Gerontology. Series A, Biological sciences and medical sciences, 61, 1166 – 1170. First citation in articleCrossrefGoogle Scholar

  • Colcombe, S. J. , Kramer, A. F. , Erickson, K. I. , Scalf, P. , McAuley, E. , Cohen, N. J. et al. (2004). Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Sciences of the United States of America, 101, 3316 – 3321. First citation in articleGoogle Scholar

  • Erickson, K. I. , Colcombe, S. J. , Elavsky, S. , McAuley, E. , Korol, D. L. , Scalf, P. E. et al. (2007). Interactive effects of fitness and hormone treatment on brain health in postmenopausal women. Neurobiology of Aging, 28, 179 – 185. First citation in articleCrossrefGoogle Scholar

  • Erickson, K. I. , Prakash, R. S. , Voss, M. W. , Chaddock, L. , Hu, L. , Morris, K. S. et al. (2009). Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus, 19, 1030 – 1039. First citation in articleCrossrefGoogle Scholar

  • Erickson, K. I. , Raji, C. A. , Lopez, O. L. , Becker, J. T. , Rosano, C. , Newman, A. B. et al. (2010). Physical activity predicts gray matter volume in late adulthood: The Cardiovascular Health Study. Neurology, 75, 1415 – 1422. First citation in articleCrossrefGoogle Scholar

  • Erickson, K. I. , Voss, M. W. , Prakash, R. S. , Basak, C. , Szabo, A. , Chaddock, L. et al. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences of the United States of America, 108, 3017 – 3022. First citation in articleGoogle Scholar

  • Jack, C. R. , Petersen, R. C. , Xu, Y. , O'Brien, P. C. , Smith, G. E. , Ivnik, R. J. et al. (2000). Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology, 55, 484 – 489. First citation in articleCrossrefGoogle Scholar

  • Marks, B. L. , Madden, D. J. , Bucur, B. , Provenzale, J. M. , White, L. E. , Cabeza, R. et al. (2007). Role of aerobic fitness and aging on cerebral white matter integrity. Annals of the New York Academy of Sciences, 1097, 171 – 174. First citation in articleCrossrefGoogle Scholar

  • Prakash, R. S. , Voss, M. W. , Erickson, K. I. , Lewis, J. M. , Chaddock, L. , Malkowski, E. et al. (2011). Cardiorespiratory fitness and attentional control in the aging brain. Frontiers in Human Neuroscience, 4, 229. First citation in articleCrossrefGoogle Scholar

  • Raz, N. , Lindenberger, U. , Rodrigue, K. M. , Kennedy, K. M. , Head, D. , Williamson, A. et al. (2005). Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cerebral Cortex, 15, 1676 – 1689. First citation in articleCrossrefGoogle Scholar

  • Rosano, C. , Venkatraman, V. K. , Guralnik, J. , Newman, A. B. , Glynn, N. W. , Launer, L. et al. (2010). Psychomotor speed and functional brain MRI 2 years after completing a physical activity treatment. The Journals of Gerontology. Series A, Biological sciences and medical sciences, 65, 639 – 647. First citation in articleCrossrefGoogle Scholar

  • Smith, J. C. , Nielson, K. A. , Woodard, J. L. , Seidenberg, M. , Durgerian, S. , Antuono, P. et al. (2011). Interactive effects of physical activity and APOE-ε4 on BOLD semantic memory activation in healthy elders. NeuroImage, 54, 635 – 644. First citation in articleCrossrefGoogle Scholar

  • Voss, M. W. , Erickson, K. I. , Prakash, R. S. , Chaddock, L. , Malkowski, E. , Alves, H. et al. (2010a). Functional connectivity: A source of variance in the association between cardiorespiratory fitness and cognition? Neuropsychologia, 48, 1394 – 1406. First citation in articleCrossrefGoogle Scholar

  • Voss, M. W. , Heo, S. , Prakash, R. S. , Erickson, K. I. , Alves, H. , Chaddock, L. et al. (2012). The influence of aerobic fitness on cerebral white matter integrity and cognitive function in older adults: Results of a one-year exercise intervention. Human Brain Mapping. doi: 10.1002/hbm.22119. First citation in articleGoogle Scholar

  • Voss, M. W. , Prakash, R. S. , Erickson, K. I. , Basak, C. , Chaddock, L. , Kim, J. S. et al. (2010b). Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Frontiers in Aging Neuroscience, 2. First citation in articleGoogle Scholar

  • Weinstein, A. M. , Voss, M. W. , Prakash, R. S. , Chaddock, L. , Szabo, A. , White, S. M. et al. (2012). The association between aerobic fitness and executive function is mediated by prefrontal cortex volume. Brain, Behavior, and Immunity, 26, 811 – 819. First citation in articleCrossrefGoogle Scholar