Skip to main content
Article

Food-Evoked Changes in Humans

Startle Response Modulation and Event-Related Brain Potentials (ERPs)

Published Online:https://doi.org/10.1027/0269-8803/a000003

Two experiments investigate effects related to food intake in humans. In Experiment 1, we measured startle response modulation while study participants ate ice cream, yoghurt, and chocolate. Statistical analysis revealed that ice cream intake resulted in the most robust startle inhibition compared to no food. Contrasting females and males, we found significant differences related to the conditions yoghurt and chocolate. In females, chocolate elicited the lowest response amplitude followed by yoghurt and ice cream. In males, chocolate produced the highest startle response amplitude even higher than eating nothing, whereas ice cream produced the lowest. Assuming that high response amplitudes reflect aversive motivation while low response amplitudes reflect appetitive motivational states, it is interpreted that eating ice cream is associated with the most appetitive state given the alternatives of chocolate and yoghurt across gender. However, in females alone eating chocolate, and in males alone eating ice cream, led to the most appetitive state. Experiment 2 was conducted to describe food intake-related brain activity by means of source localization analysis applied to electroencephalography data (EEG). Ice cream, yoghurt, a soft drink, and water were compared. Brain activity in rostral portions of the superior frontal gyrus was found in all conditions. No localization differences between conditions occurred. While EEG was found to be insensitive, startle response modulation seems to be a reliable method to objectively quantify motivational states related to the intake of different foods.

References

  • Bauer, H. , Lauber, W. (1979). Operant conditioning of brain steady potential shifts in man. Biofeedback and Self-Regulation, 4, 145–154. First citation in articleCrossrefGoogle Scholar

  • Blumenthal, T. D. , Cuthbert, B. N. , Filion, D. L. , Hackley, S. , Lipp, O. V. , Van Boxtel, A. (2005). Committee report: Guidelines for human startle eyeblink electromyographic studies. Psychophysiology, 42, 1–15. First citation in articleCrossrefGoogle Scholar

  • Filion, D. L. , Dawson, M. E. , Schell, A. M. (1998). The psychological significance of human startle eyeblink modification: A review. Biological Psychology, 47, 1–43. First citation in articleCrossrefGoogle Scholar

  • Friederich, H.-C. , Kumari, V. , Uher, R. , Riga, M. , Schmidt, U. , Campbell, I. C. , Herzog, W. (2006). Differential motivational responses to food and pleasurable cues in anorexia and bulimia nervosa: A startle reflex paradigm. Psychological Medicine, 36, 1327–1335. First citation in articleCrossrefGoogle Scholar

  • Fuchs, M. , Kastner, J. , Wagner, M. , Hawes, S. , Ebersole, J. S. (2002). A standardized boundary element method volume conductor model. Clinical Neurophysiology, 113, 702–712. First citation in articleCrossrefGoogle Scholar

  • Fuster, J. M. (1997). The prefrontal cortex (3rd ed.). New York: Raven. First citation in articleGoogle Scholar

  • Greenblatt, R. E. , Ossadtchi, A. , Pflieger, M. E. (2005). Local linear estimators for the bioelectromagnetic inverse problem. IEEE Transactions on Signal Processing, 53, 3403–3412. First citation in articleCrossrefGoogle Scholar

  • Grillon, C. , Baas, J. (2003). A review of the modulation of the startle reflex by affective states and its application in psychiatry. Clinical Neurophysiology, 114, 1557–1579. First citation in articleCrossrefGoogle Scholar

  • Hallschmid, M. , Mölle, M. , Fischer, S. , Born, J. (2002). EEG synchronization upon reward in man. Clinical Neurophysiology, 113, 1059–1065. First citation in articleCrossrefGoogle Scholar

  • Hallschmid, M. , Mölle, M. , Wagner, U. , Fehm, H. L. , Born, J. (2001). Drinking related direct current positive potential shift in the human EEG depends on thirst. Neuroscience Letters, 311, 173–176. First citation in articleCrossrefGoogle Scholar

  • Landis, C. , Hunt, W. A. (1939). The startle pattern. New York: Farrar and Rinehart Inc. First citation in articleGoogle Scholar

  • Lang, P. J. , Bradley, M. M. , Cuthbert, B. N. (1990). Emotion, attention, and the startle reflex. Psychological Review, 97, 1–19. First citation in articleCrossrefGoogle Scholar

  • Lüthy, M. , Blumenthal, D. T. , Langewitz, W. , Kiss, A. , Keller, U. , Schächinger, H. (2003). Prepulse inhibition of the human startle eyeblink response by visual food cues. Appetite, 41, 191–195. First citation in articleCrossrefGoogle Scholar

  • Macht, M. , Dettmer, D. (2006). Everyday mood and emotions after eating a chocolate bar or an apple. Appetite, 46, 332–336. First citation in articleCrossrefGoogle Scholar

  • Macht, M. , Roth, S. , Ellgring, H. (2002). Chocolate eating in healthy men during experimentally induced sadness and joy. Appetite, 39, 147–158. First citation in articleCrossrefGoogle Scholar

  • Makeig, S. , Jung, T. P. , Bell, A. J. , Ghahremani, D. , Sejnowski, T. J. (1997). Blind separation of auditory event-related brain responses into independent components. Proceedings of the National Academy of Sciences, 94, 10979–10984. First citation in articleGoogle Scholar

  • Mason, J. R. , Artz, A. H. , Reidinger, R. F. (1984). Comparative assessment of food preferences and aversions acquired by blackbirds via observational learning. The Auk, 101, 796–803. First citation in articleCrossrefGoogle Scholar

  • Mazziotta, J. , Toga, A. , Evans, A. , Fox, P. , Lancaster, J. , Zilles, K. , ... Mazoyer, B. (2001). A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philosophical Transanctions of the Royal Society London B: Biological Science, 356(1412), 1293–1322. First citation in articleCrossrefGoogle Scholar

  • Nichols, T. E. , Holmes, A. P. (2002). Nonparametric permutation tests for functional neuroimaging: A primer with examples. Human Brain Mapping, 15(1), 1–25. First citation in articleCrossrefGoogle Scholar

  • O’Doherty, J. , Kringelbach, M. L. , Rolls, E. T. , Hornak, J. , Andrews, C. (2001). Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neuroscience, 4(1), 95–102. First citation in articleCrossrefGoogle Scholar

  • O’Doherty, J. , Rolls, E. T. , Francis, S. , Bowtell, R. , McGlone, F. , Kobal, G. , ... Ahne, G. (2000). Sensory-specific satiety-related olfactory activation of the human orbitofrontal cortex. Neuroreport, 11, 399–403. First citation in articleCrossrefGoogle Scholar

  • Pascual-Marqui, R. D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): Technical details. Methods & Findings in Experimental & Clinical Pharmacology, 24(Suppl. D), 5–12. First citation in articleGoogle Scholar

  • Pascual-Marqui, R. D. , Michel, C. M. , Lehmann, D. (1994). Low resolution electromagnetic tomography: A new method for localizing electrical activity in the brain. International Journal of Psychophysiology, 18, 49–65. First citation in articleCrossrefGoogle Scholar

  • Rolls, E. T. (2004). The functions of the orbitofrontal cortex. Brain and Cognition, 55, 11–29. First citation in articleCrossrefGoogle Scholar

  • Rolls, E. T. , Critchley, H. D. , Browning, A. S. , Hernadi, I. , Lenard, L. (1999). Responses to the sensory properties of fat of neurons in the primate orbitofrontal cortex. Journal of Neuroscience, 19, 1532–1540. First citation in articleGoogle Scholar

  • Rolls, E. T. , Sienkiewicz, Z. J. , Yaxley, S. (1989). Hunger modulates the responses to gustatory stimuli of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. European Journal of Neuroscience, 1(1), 53–60. First citation in articleCrossrefGoogle Scholar

  • Schmitt, B. , Mölle, M. , Marshall, L. , Hallschmid, M. , Born, J. (2001). Scalp recorded direct current (DC) potential shifts associated with food intake in hungry humans. Behavioural Brain Research, 119(1), 85–92. First citation in articleCrossrefGoogle Scholar

  • Sekihara, K. , Sahani, M. , Nagarajan, S. S. (2005). Localization bias and spatial resolution of adaptive and nonadaptive spatial filters for MEG source reconstruction. Neuroimage, 25, 1056–1067. First citation in articleCrossrefGoogle Scholar

  • Small, D. M. , Zatorre, R. J. , Dagher, A. , Evans, A. C. , Jones-Gotman, M. (2001). Changes in brain activity related to eating chocolate. From pleasure to aversion. Brain, 124, 1720–1733. First citation in articleCrossrefGoogle Scholar

  • Szabo, I. (1964). Analysis of the muscular action potentials accompanying the acoustic startle reaction. Acta Physiologica Hungarica, 27, 167–178. First citation in articleGoogle Scholar

  • Verhagen, J. V. , Rolls, E. T. , Kadohisa, M. (2003). Neurons in the primate orbitofrontal cortex respond to fat texture independently of viscosity. Journal of Neurophysiology, 90, 1514–1525. First citation in articleCrossrefGoogle Scholar

  • Vrana, S. R. , Spence, E. L. , Lang, P. J. (1988). The startle probe response: A new measure of emotion? Journal of Abnormal Psychology, 97, 487–491. First citation in articleCrossrefGoogle Scholar

  • Wagner, M. , Fuchs, M. , Kastner, J. (2004). Evaluation of sLORETA in the presence of noise and multiple sources. Brain Topography, 16, 277–280. First citation in articleCrossrefGoogle Scholar

  • Wansink, B. , Cheney, M. M. , Chan, N. (2003). Exploring comfort food preferences across age and gender. Physiology and Behavior, 79, 739–747. First citation in articleCrossrefGoogle Scholar

  • Yeomans, J. S. , Frankland, P. W. (1996). The acoustic startle reflex: Neurons and connections. Brain Research Reviews, 21, 301–314. First citation in articleCrossrefGoogle Scholar

  • Zellner, D. A. , Garriga-Trillo, A. , Rohm, E. , Centino, S. , Parker, S. (1999). Food liking and craving: A cross-cultural approach. Appetite, 33, 61–70. First citation in articleCrossrefGoogle Scholar