Skip to main content
Published Online:https://doi.org/10.1027/0269-8803/a000198

Abstract. Emotional stimuli automatically capture attention in ways that are relevant to the survival value of the stimuli. We have previously shown that individual differences in resting heart rate variability (HRV) were related to attentional capture by negative (fearful) and neutral distractors. However, different negative emotions such as fear and disgust may differentially capture attention. In the present study we investigated the effect of automatic attention capture by disgust and fear stimuli on behavioral and phasic heart rate responses as well as its relationship with resting heart rate variability (HRV). Twenty-eight participants (14 men) were divided into two groups based on their resting HRV. Phasic cardiac responses as well as reaction times and errors on a digit categorization task were assessed with disgust, fear, and neutral pictures as distractors. In the high HRV group disgusting distractors produced the strongest interference on the ongoing cognitive task indicated by more errors and longer reaction times as well as a deeper cardiac deceleration compared to fearful or neutral distractors. In contrast, the low HRV group showed faster reaction times to fear evoking pictures, whereas their heart rate responses and number of errors did not distinguish between the three emotional categories. Our results suggest that high HRV participants showed the emotional context appropriate responses while low HRV participants seem to be hypervigilant to fear.

References

  • Appelhans, B. M. & Luecken, L. J. (2006). Heart rate variability as an index of regulated emotional responding. Review of General Psychology, 10, 229–240. doi: 10.1037/1089-2680.10.3.229 First citation in articleCrossrefGoogle Scholar

  • Benarroch, E. E. (1993). The central autonomic network: Functional organization, dysfunction, and perspective. Mayo Clinic Proceedings, 68, 988–1001. doi: 10.1016/S0025-6196(12)62272-1 First citation in articleCrossrefGoogle Scholar

  • Carretié, L. (2014). Exogenous (automatic) attention to emotional stimuli: A review. Cognitive, Affective & Behavioral Neuroscience, 14, 1228–1258. doi: 10.3758/s13415-014-0270-2 First citation in articleCrossrefGoogle Scholar

  • Carretié, L., Hinojosa, J. A., López-Martín, S., Albert, J., Tapia, M. & Pozo, M. A. (2009). Danger is worse when it moves: Neural and behavioral indices of enhanced attentional capture by dynamic threatening stimuli. Neuropsychologia, 47, 364–369. doi: 10.1016/j.neuropsychologia.2008.09.007 First citation in articleCrossrefGoogle Scholar

  • Carretié, L., Ruiz-Padial, E., López-Martín, S. & Albert, J. (2011). Decomposing unpleasantness: Differential exogenous attention to disgusting and fearful stimuli. Biological Psychology, 86, 247–253. doi: 10.1016/j.biopsycho.2010.12.005 First citation in articleCrossrefGoogle Scholar

  • Charash, M. & McKay, D. (2002). Attention bias for disgust. Journal of Anxiety Disorders, 16, 529–541. doi: 10.1016/S0887-6185(02)00171-8 First citation in articleCrossrefGoogle Scholar

  • Ciesielski, B. G., Armstrong, T., Zald, D. H. & Olatunji, B. O. (2010). Emotion modulation of visual attention: Categorical and temporal characteristics. PLoS One, 5, e13860. doi: 10.1371/journal.pone.0013860 First citation in articleCrossrefGoogle Scholar

  • Cisler, J. M., Olatunji, B. O. & Lohr, J. M. (2009). Disgust, fear, and the anxiety disorders: A critical review. Clinical Psychology Review, 29, 34–46. doi: 10.1016/j.cpr.2008.09.007 First citation in articleCrossrefGoogle Scholar

  • Cisler, J. M., Olatunji, B. O., Lohr, J. M. & Williams, N. L. (2009). Attentional bias differences between fear and disgust: Implications for the role of disgust in disgust-related anxiety disorders. Cognition and Emotion, 23, 675–687. doi: 10.1080/02699930802051599 First citation in articleCrossrefGoogle Scholar

  • Cook, E. & Turpin, G. (1997). Differentiating orienting, startle, and defense responses: The role of affect and its implications for psychopathology. In P. J. LangR. F. SimonsM. BalabanEds., Attention and orienting: Sensory and motivational processes (pp. 137–164). New York, NY: Erlbaum. First citation in articleGoogle Scholar

  • Elsesser, K., Heuschen, I., Pundt, I. & Sartory, G. (2006). Attentional bias and evoked heart-rate response in specific phobia. Cognition and Emotion, 20, 1092–1107. doi: 10.1080/02699930500375712 First citation in articleCrossrefGoogle Scholar

  • Esslen, M., Pascual-Marqui, R. D., Hell, D., Kochi, K. & Lehmann, D. (2004). Brain areas and time course of emotional processing. NeuroImage, 21, 1189–1203. doi: 10.1016/j.neuroimage.2003.10.001 First citation in articleCrossrefGoogle Scholar

  • Friedman, B. H. (2007). An autonomic flexibility – neurovisceral integration model of anxiety and cardiac vagal tone. Biological psychology, 74, 185–199. First citation in articleCrossrefGoogle Scholar

  • Graham, F. K. & Jackson, J. C. (1970). Arousal systems and infant heart rate responses. Advances in Child Development and Behavior, 5, 59–117. doi: 10.1016/S0065-2407(08)60465-6 First citation in articleCrossrefGoogle Scholar

  • Haidt, J., McCauley, C. & Rozin, P. (1994). Individual differences in sensitivity to disgust: A scale sampling seven domains of disgust elicitors. Personality and Individual Differences, 16, 701–713. doi: 10.1016/0191-8869(94)90212-7 First citation in articleCrossrefGoogle Scholar

  • Harrison, L. K. & Turpin, G. (2003). Implicit memory bias and trait anxiety: A psychophysiological analysis. Biological Psychology, 62, 97–114. doi: 10.1016/S0301-0511(02)00129-1 First citation in articleCrossrefGoogle Scholar

  • Heatherton, T. F. & Wagner, D. D. (2011). Cognitive neuroscience of self-regulation failure. Trends in Cognitive Sciences, 15, 132–139. doi: 10.1016/j.tics.2010.12.005 First citation in articleCrossrefGoogle Scholar

  • Jarczok, M. N., Koenig, J., Fischer, J. E. & Thayer, J. F. (2015). First evaluation of a measure of heart rate variability as a novel marker of cardiovascular risk [Abstract]. Psychosomatic Medicine, 77, 104. First citation in articleGoogle Scholar

  • Johnsen, B. H., Thayer, J. F. & Hugdahl, K. (1995). Affective judgment of the Ekman faces: A dimensional approach. Journal of Psychophysiology, 9, 193–202. First citation in articleGoogle Scholar

  • Krusemark, E. A. & Li, W. (2011). Do all threats work the same way? Divergent effects of fear and disgust on sensory perception and attention. The Journal of Neuroscience, 31, 3429–3434. doi: 10.1523/JNEUROSCI.4394-10.2011 First citation in articleCrossrefGoogle Scholar

  • Kuo, T. B., Lai, C. J., Huang, Y. T. & Yang, C. C. (2005). Regression analysis between heart rate variability and baroreflex-related vagus nerve activity in rats. Journal of Cardiovascular Electrophysiology, 16, 864–869. First citation in articleCrossrefGoogle Scholar

  • Lacey, B. C. & Lacey, J. I. (1977). Change in heart period: A function of sensorimotor event timing within the cardiac cycle. Physiological Psychology, 5, 383–393. doi: 10.3758/BF03335349 First citation in articleCrossrefGoogle Scholar

  • Lang, P. J., Bradley, M. M. & Cuthbert, B. N. (2008). International affective picture system (IAPS): Affective ratings of pictures and instruction manual. Technical Report A-8. Gainesville, FL: University of Florida. First citation in articleGoogle Scholar

  • Levy, M. N. (1971). Brief reviews sympathetic-parasympathetic interactions in the heart. Circulation Research, 29, 437–445. doi: 10.1161/01.RES.29.5.437 First citation in articleCrossrefGoogle Scholar

  • MacLeod, C., Mathews, A. & Tata, P. (1986). Attentional bias in emotional disorders. Journal of Abnormal Psychology, 95, 15. doi: 10.1037/0021-843X.95.1.15 First citation in articleCrossrefGoogle Scholar

  • MacNamara, A., Kappenman, E. S., Black, S. R., Bress, J. N. & Hajcak, G. (2013). Integrating behavioral and electrocortical measures of attentional bias toward threat. In K. Caplovitz-BarrettN. A. FoxG. A. MorganD. J. FidlerL. A. DaunhauerEds., Handbook of self-regulatory processes in development: New directions and international perspectives (pp. 215–242). New York, NY: Psychology Press. doi: 10.4324/9780203080719.ch11 First citation in articleCrossrefGoogle Scholar

  • Mathews, A. & MacLeod, C. (2005). Cognitive vulnerability to emotional disorders. Annual Review of Clinical Psychology, 1, 167–195. doi: 10.1146/annurev.clinpsy.1.102803.143916 First citation in articleCrossrefGoogle Scholar

  • Miu, A. C. & Visu-Petra, L. (2010). Anxiety disorders in children and adults: A cognitive, neurophysiological and genetic characterization. In R. A. CarlstedtEd., Handbook of integrative clinical psychology, psychiatry and behavioral medicine: Perspectives, practices and research (pp. 309–351). New York, NY: Springer. First citation in articleGoogle Scholar

  • Motzkin, J. C., Philippi, C. L., Wolf, R. C., Baskaya, M. K. & Koenigs, M. (2015). Ventromedial prefrontal cortex is critical for the regulation of amygdala activity in humans. Biological Psychiatry, 77, 276–284. doi: 10.1016/j.biopsych.2014.02.014 First citation in articleCrossrefGoogle Scholar

  • Öhman, A., Flykt, A. & Esteves, F. (2001). Emotion drives attention: Detecting the snake in the grass. Journal of Experimental Psychology: General, 130, 466. First citation in articleCrossrefGoogle Scholar

  • Olatunji, B. O. & Sawchuk, C. N. (2005). Disgust: Characteristic features, social manifestations, and clinical implications. Journal of Social and Clinical Psychology, 24, 932–962. doi: 10.1521/jscp.2005.24.7.932 First citation in articleCrossrefGoogle Scholar

  • Olatunji, B. O., Williams, N. L., Tolin, D. F., Abramowitz, J. S., Sawchuk, C. N., Lohr, J. M. & Elwood, L. S. (2007). The disgust scale: Item analysis, factor structure, and suggestions for refinement. Psychological Assessment, 19, 281–297. doi: 10.1037/1040-3590.19.3.281 First citation in articleCrossrefGoogle Scholar

  • Park, G., Van Bavel, J. J., Vasey, M. W. & Thayer, J. F. (2013). Cardiac vagal tone predicts attentional engagement to and disengagement from fearful faces. Emotion, 13, 645. doi: 10.1037/a0032971 First citation in articleCrossrefGoogle Scholar

  • Park, G., Vasey, M. W., Van Bavel, J. J. & Thayer, J. F. (2013). Cardiac vagal tone is correlated with selective attention to neutral distractors under load. Psychophysiology, 50, 398–406. doi: 10.1111/psyp.12029 First citation in articleCrossrefGoogle Scholar

  • Perakakis, P., Joffily, M., Taylor, M., Guerra, P. & Vila, J. (2010). KARDIA: A matlab software for the analysis of cardiac interbeat intervals. Computer Methods and Programs Biomedicine, 98, 83–89. doi: 10.1016/j.cmpb.2009.10.002 First citation in articleCrossrefGoogle Scholar

  • Porges, S. W. (1992). Autonomic regulation and attention. In B. A. CampbellH. HayneR. RichardsonEds., Attention and information processing in infants and adults (pp. 201–223). Mahwah, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Ratcliff, R. (1993). Methods for dealing with reaction time outliers. Psychological Bulletin, 114, 510. First citation in articleCrossrefGoogle Scholar

  • Rosnow, R. L. & Rosenthal, R. (2009). Effect sizes: Why, when, and how to use them. Zeitschrift für Psychologie/Journal of Psychology, 217, 6–14. doi: 10.1027/0044-3409.217.1.6 First citation in articleLinkGoogle Scholar

  • Ruiz-Padial, E., Sollers, J. J., Vila, J. & Thayer, J. F. (2003). The rhythm of the heart in the blink of an eye: Emotion-modulated startle magnitude covaries with heart rate variability. Psychophysiology, 40, 306–313. doi: 10.1111/1469-8986.00032 First citation in articleCrossrefGoogle Scholar

  • Ruiz-Padial, E. & Thayer, J. F. (2014). Resting heart rate variability and the startle reflex to briefly presented affective pictures. International Journal of Psychophysiology, 94, 329–335. doi: 10.1016/j.ijpsycho.2014.10.005 First citation in articleCrossrefGoogle Scholar

  • Sakaki, M., Yoo, H. J., Nga, L., Lee, T. H., Thayer, J. F. & Mather, M. (2016). Heart rate variability is associated with amygdala functional connectivity with MPFC across younger and older adults. NeuroImage, 139, 44–52. doi: 10.1016/j.neuroimage.2016.05.076 First citation in articleCrossrefGoogle Scholar

  • Sandín, B., Valiente, R. M. & Chorot, P. (2008). Instrumentos para la evaluación de los miedos y las fobias [Instruments for evaluation of fear and phobias]. Las fobias específicas, 165–205. First citation in articleGoogle Scholar

  • Smith, R., Allen, J. J., Thayer, J. F. & Lane, R. D. (2015). Altered functional connectivity between medial prefrontal cortex and the inferior brainstem in major depression during appraisal of subjective emotional responses: A preliminary study. Biological Psychology, 108, 13–24. doi: 10.1016/j.biopsycho.2015.03.007 First citation in articleCrossrefGoogle Scholar

  • Somsen, R. J. M., Molen, M. W. & Orlebeke, J. F. (1983). Phasic heart rate changes in reaction time, shock avoidance, and unavoidable shock tasks: Are hypothetical generalizations about different S1-S2 tasks justified? Psychophysiology, 20, 88–94. doi: 10.1111/j.1469-8986.1983.tb00908.x First citation in articleCrossrefGoogle Scholar

  • Spielberger, C. D., Cubero, N. S., Gorsuch, R. L. & Lushene, R. E. (1982). Cuestionario de ansiedad estado-rasgo (STAI) Spanish adaptation [State-Trait Anxiety Inventory]. Barcelona, Spain: Tea Ediciones. First citation in articleGoogle Scholar

  • Susskind, J. M., Lee, D. H., Cusi, A., Feiman, R., Grabski, W. & Anderson, A. K. (2008). Expressing fear enhances sensory acquisition. Nature Neuroscience, 11, 843–850. doi: 10.1038/nn.2138 First citation in articleCrossrefGoogle Scholar

  • Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. (1996). Heart rate variability: Standards of measurement, physiology interpretation, and clinical use. Circulation, 93, 1043–1065. First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F., Friedman, B. H., Borkovec, T. D., Johnsen, B. H. & Molina, S. (2000). Phasic heart period reactions to cued threat and non-threat stimuli in generalized anxiety disorder. Psychophysiology, 37, 361–368. First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F., Hansen, A. L., Saus-Rose, E. & Johnsen, B. H. (2009). Heart rate variability, prefrontal neural function, and cognitive performance: The neurovisceral integration perspective on self-regulation, adaptation, and health. Annals of Behavioral Medicine, 37, 141–153. doi: 10.1007/s12160-009-9101-z First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F. & Lane, R. D. (2000). A model of neurovisceral integration in emotion regulation and dysregulation. Journal of Affective Disorders, 61, 201–216. doi: 10.1016/S0165-0327(00)00338-4 First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F. & Lane, R. D. (2009). Claude Bernard and the heart-brain connection: Further elaboration of a model of neurovisceral integration. Neuroscience & Biobehavioral Reviews, 33, 81–88. First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F., Sollers, J. J. III, Ruiz-Padial, E. & Vila, J. (2002). Estimation of respiratory frequency from autoregressive spectral analysis of heart period. IEEE Engineering in Medicine and Biology, 21, 41–45. First citation in articleCrossrefGoogle Scholar

  • van Hooff, J. C., Devue, C., Vieweg, P. E. & Theeuwes, J. (2013). Disgust-and not fear-evoking images hold our attention. Acta Psychologica, 143, 1–6. doi: 10.1016/j.actpsy.2013.02.001 First citation in articleCrossrefGoogle Scholar

  • van Hooff, J. C., van Buuringen, M., El M’rabet, I., de Gier, M. & van Zalingen, L. (2014). Disgust-specific modulation of early attention processes. Acta Psychologica, 152, 149–157. doi: 10.1016/j.actpsy.2014.08.009 First citation in articleCrossrefGoogle Scholar

  • Vasey, M. W. & Thayer, J. F. (1987). The continuing problem of false positives in repeated measures ANOVA in psychophysiology: A multivariate solution. Psychophysiology, 24, 479–486. doi: 10.1111/j.1469-8986.1987.tb00324.x First citation in articleCrossrefGoogle Scholar

  • Warner, H. R. & Cox, A. (1962). A mathematical model of heart rate control by sympathetic and vagus efferent information. Journal of Applied Physiology, 17, 349–355. doi: 10.1177/003754976400300114 First citation in articleCrossrefGoogle Scholar

  • Wendt, J., Neubert, J., Koenig, J., Thayer, J. F. & Hamm, A. O. (2015). Resting heart rate variability is associated with inhibition of conditioned fear. Psychophysiology, 52, 1161–1166. doi: 10.1111/psyp.12456 First citation in articleCrossrefGoogle Scholar