Skip to main content
Article

Daytime Acute Non-Visual Alerting Response in Brain Activity Occurs as a Result of Short- and Long-Wavelengths of Light

Published Online:https://doi.org/10.1027/0269-8803/a000199

Abstract. Very recent preliminary findings concerning the alerting capacities of light stimulus with long-wavelengths suggest the existence of neural pathways other than melatonin suppression that trigger the nonvisual response. Though the nonvisual effects of light during the daytime have not been investigated thoroughly, they are definitely worth investigating. The purpose of the present study is to enrich existing evidence by describing how quantitative electroencephalography (EEG) signal analysis can give insight into the measurement of the acute nonvisual response observed in brain states generated during daytime exposure to light (when melatonin secretion is negligible). EEG changes were assessed in 19 subjects during the daytime while being exposed to both short- (blue, 72 μW/cm2) and long-wavelength (red, 18 μW/cm2) radiation. We showed that artificial light stimulus as low as 40 lux decreases the synchronization in the upper theta, lower alpha, and upper alpha EEG activity spectrum. The direction of change was consistent with an increased level of alertness. We can conclude that EEG analysis is an indicator of the acute nonvisual response to daytime light. Surprisingly, the response was more spread over the scalp during exposure to red light than to blue light. According to our study, the response to long-wavelength stimulus that inhibits sleepiness, thereby inducing alertness, also takes place at the bright part of the 24-hr day when human beings are naturally predisposed to be exposed to a high level of sunlight: between 12 and 4 PM. The absorption spectrum of the nonvisual system seems to have different characteristics than was previously suspected: it is not dominated by the short-wavelengths, but involves long-wavelengths. Since we observed the predominance of the red-light alerting effect over the blue-light in this experiment, we conclude that more than one mechanism, beyond the melatonin pathway, must be involved.

References

  • Åkerstedt, T. & Gillberg, M. (1990). Subjective and objective sleepiness in the active individual. The International Journal of Neuroscience, 52, 29–37. doi: 10.3109/00207459008994241 First citation in articleCrossrefGoogle Scholar

  • Badia, P., Myers, B., Boecker, M., Culpepper, J. & Harsh, J. R. (1991). Bright light effects on body temperature, alertness, EEG and behavior. Physiology & Behavior, 50, 583–588. First citation in articleCrossrefGoogle Scholar

  • Beck, A. T. (1988). Psychometric properties of the Beck Depression Inventory: Twenty-five years of evaluation. Clinical Psychology Review, 8(1), 77–100. First citation in articleCrossrefGoogle Scholar

  • Ben-Shlomo, R. & Kyriacou, C. P. (2010). Light pulses administered during the circadian dark phase alter expression of cell cycle associated transcripts in mouse brain. Cancer Genetics and Cytogenetics, 197, 65–70. doi: 10.1016/j.cancergencyto.2009.11.003 First citation in articleCrossrefGoogle Scholar

  • Berson, D. M., Dunn, F. A. & Takao, M. (2002). Phototransduction by retinal ganglion cells that set the circadian clock. Science, 295, 1070–1073. First citation in articleCrossrefGoogle Scholar

  • Brainard, G., Hanifin, J., Greeson, J., Byrne, B., Glickman, G. & Gerner, E. (2001). Action spectrum for melatonin regulation in humans: Evidence for a novel circadian photoreceptor. The Journal of Neuroscience, 21, 6405–6412. First citation in articleCrossrefGoogle Scholar

  • Buysse, D. J., Reynolds, C. F. 3rd, Monk, T. H., Berman, S. R. & Kupfer, D. J. (1989). The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Research, 28(2), 193–213. First citation in articleCrossrefGoogle Scholar

  • Cahill, L. (2006). Why sex matters for neuroscience. Nature Reviews Neuroscience, 7, 477–484. First citation in articleCrossrefGoogle Scholar

  • Cajochen, C. (2007). Alerting effects of light. Sleep Medicine Reviews, 11, 453–464. First citation in articleCrossrefGoogle Scholar

  • Cajochen, C., Brunner, D. P., Kräuchi, K., Graw, P. & Wirz-Justice, A. (1995). Power density in theta/alpha frequencies of the waking EEG progressively increases during sustained wakefulness. Sleep, 18, 890–894. First citation in articleCrossrefGoogle Scholar

  • Cajochen, C., Chellappa, S. & Schmidt, C. (2010). What keeps us awake? The role of clocks and hourglasses, light, and melatonin. International Review of Neurobiology, 93, 57–90. First citation in articleCrossrefGoogle Scholar

  • Cajochen, C., Frey, S., Anders, D., Späti, J., Bues, M., Pross, A., … Stefani, O. (2011). Evening exposure to a lightemitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance. Journal of Applied Physiology, 110, 1432–1438. First citation in articleCrossrefGoogle Scholar

  • Cajochen, C., Jud, C., Münch, M., Kobialka, S., Wirz-Justice, A. & Albrecht, U. (2006). Evening exposure to blue light stimulates the expression of the clock gene PER2 in humans. The European Journal of Neuroscience, 23, 1082–1086. First citation in articleCrossrefGoogle Scholar

  • Cajochen, C., Khalsa, S. B. S., Wyatt, J. K., Czeisler, C. A. & Dijk, D. J. (1999). EEG and ocular correlates of circadian melatonin phase and human performance decrements during sleep loss. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 277, 640–649. First citation in articleCrossrefGoogle Scholar

  • Cajochen, C., Kräuchi, K., Danilenko, K. V. & Wirz-Justice, A. (1998). Evening administration of melatonin and bright light: Interactions on the EEG during sleep and wakefulness. Journal of Sleep Research, 7, 145–157. First citation in articleCrossrefGoogle Scholar

  • Cajochen, C., Munch, M., Kobialka, S., Krauchi, K., Steiner, R., Oelhafen, P., … Wizr-Justice, A. (2005). High sensitivity of human melatonin, alertness, thermoregulation and heart rate to short wavelength light. The Journal of Clinical Endocrinology and Metabolism, 90, 1311–1316. First citation in articleCrossrefGoogle Scholar

  • Cajochen, C., Wyatt, J. K., Czeisler, C. A. & Dijk, D. J. (2002). Separation of circadian and wake duration-dependent modulation of EEG activation during wakefulness. Neuroscience, 114, 1047–1060. First citation in articleCrossrefGoogle Scholar

  • Cajochen, C., Zeitzer, J. M., Czeisler, C. A. & Dijk, D. J. (2000). Dose-response relationship for light intensity and ocular and electroencephalographic correlates of human alertness. Behavioural Brain Research, 115, 75–83. First citation in articleCrossrefGoogle Scholar

  • Chang, A. M., Aeschbach, D., Duffy, J. F. & Czeisler, C. A. (2014). Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proceedings of the National Academy of Sciences of the United States of America, 112, 1232–1237. doi: 10.1073/pnas.1418490112 First citation in articleCrossrefGoogle Scholar

  • Chellappa, S. L., Steiner, R., Blattner, P., Oelhafen, P., Götz, T. & Cajochen, C. (2011). Non-visual effects of light on melatonin, alertness and cognitive performance: Can blue-enriched light keep us alert? PLoS One, 6, e16429. First citation in articleCrossrefGoogle Scholar

  • Chellappa, S. L., Steiner, R., Oelhafen, P., Lang, D., Götz, T., & Cajochen, C. (2013). Acute exposure to evening blue-enriched light impacts on human sleep. Journal of Sleep Research, 22, 573–580. First citation in articleCrossrefGoogle Scholar

  • Dijk, D. J. & Archer, S. N. (2009). Light, sleep and circadian rhythms: Together Again. PLoS Biology, 7, e1000145. 1–4. doi: 10.1371/journal.pbio.1000145 First citation in articleCrossrefGoogle Scholar

  • Figueiro, M. G., Bierman, A., Plitnick, B. & Rea, M. S. (2009). Preliminary evidence that both blue and red light can induce alertness at night. BMC Neuroscience, 10, 105. doi: 10.1186/14712202-10-105 First citation in articleCrossrefGoogle Scholar

  • Figueiro, M. G., Bullough, J. D., Bierman, A., Fay, C. R. & Rea, M. S. (2007). On light as an alerting stimulus at night. Acta Neurobiologiae Experimentalis, 67, 171–178. First citation in articleGoogle Scholar

  • Figueiro, M. G. & Rea, M. S. (2010). Lack of short-wavelength light during the school day delays dim light melatonin onset (DLMO) in the middle school students. Neuroendocrinology Letters, 31, 92–96. First citation in articleGoogle Scholar

  • Folkard, S. (2008). Do permanent night workers show circadian adjustment? A review based on the endogenous melatonin rhythm. Chronobiology International, 25, 215–224. First citation in articleCrossrefGoogle Scholar

  • Johns, M. W. (1991). A new method for measuring daytime sleepiness: The Epworth sleepiness scale. Sleep, 14(6), 540–545. First citation in articleCrossrefGoogle Scholar

  • Kaida, K., Takahashi, M., Akerstedt, T., Nakata, A., Otsuka, Y., Haratani, T. & Fukasawa, K. (2006). Validation of the Karolinska sleepiness scale against performance and EEG variables. Clinical Neurophysiology, 117(7), 1574–1581. First citation in articleCrossrefGoogle Scholar

  • Kaplan, R., Bush, D., Bonnefond, M., Bandettini, P. A., Barnes, G. R., Doeller, C. F. & Burgess, N. (2014). Medial prefrontal theta phase coupling during spatial memory retrieval. Hippocampus, 24, 656–665. doi: 10.1002/hipo.22255 First citation in articleCrossrefGoogle Scholar

  • Kirov, R., Weiss, C., Siebner, H. R., Born, J. & Marshall, L. (2009). Slow oscillation electrical brain stimulation during waking promotes EEG theta activity, memory encoding. Proceedings of the National Academy of Sciences of the United States of America, 106, 36. First citation in articleCrossrefGoogle Scholar

  • Klejna, M., Uscka-Kowalkowska, J., Araźny, A., Kunz, M., Maszewski, R. & Przybylak, R. (2014). Spatial differentiation of global solar radiation in Toruń and its suburban area (Central Poland) in 2012. Bulletin of Geography – Physical Geography Series, 7, 27–54. doi: 10.2478/bgeo-2014-0002 First citation in articleCrossrefGoogle Scholar

  • Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29, 169–195. First citation in articleCrossrefGoogle Scholar

  • Lockley, S. W., Brainard, G. C. & Czeisler, C. A. (2003). High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. The Journal of Clinical Endocrinology and Metabolism, 88, 4502–4505. First citation in articleCrossrefGoogle Scholar

  • Lockley, S. W., Evans, E. E., Scheer, F., Brainard, G. C., Czeisler, C. A. & Aeschbach, D. (2005). Short-wavelength sensitivity for the direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans. Sleep, 29, 161–168. First citation in articleGoogle Scholar

  • Lockley, S. W. & Gooley, J. J. (2006). Circadian photoreception: Spotlight on the Brain. Current Biology, 16, 795–797. First citation in articleCrossrefGoogle Scholar

  • Lucas, R. J., Peirson, S. N., Berson, D. M., Brown, T. M., Cooper, H. M., Czeisler, C. A., … Breinard, G. C. (2014). Measuring and using light in the melanopsin age. Trends in Neurosciences, 37, 1–9. doi: 10.1016/j.tins.2013.10.004 First citation in articleCrossrefGoogle Scholar

  • Mehta, R. & Zhu, R. (2009). Blue or red? Exploring the effect of color on cognitive task performances. Science, 323, 1226–1229. First citation in articleCrossrefGoogle Scholar

  • Mills, P. R., Tomkins, S. C. & Schlangen, L. J. M. (2007). The effect of high correlated colour temperature office lighting on employee wellbeing and work performance. Journal of Circadian Rhythms, 5, Art. 2. doi: 10.1186/1740-3391-5-2 First citation in articleCrossrefGoogle Scholar

  • Osipova, D., Takashima, A., Oostenveld, R., Fernández, R., Maris, E. & Jensen, O. (2006). Theta and gamma oscillations predict encoding and retrieval of declarative memory. The Journal of Neuroscience, 26, 7523–7531. doi: 10.1523/JNEUROSCI.1948-06.2006 First citation in articleCrossrefGoogle Scholar

  • Phipps-Nelson, J., Redman, J. R., Dijk, D. J. & Rajaratnam, S. M. (2003). Daytime exposure to bright light, as compared to dim light, decreases sleepiness and improves psychomotor vigilance performance. Sleep, 26, 695–700. First citation in articleCrossrefGoogle Scholar

  • Plitnick, B., Figueiro, M. G., Wood, B. & Rea, M. S. (2010). The effects of red and blue light on alertness and mood at night. Lighting Research & Technology, 42, 449–458. First citation in articleCrossrefGoogle Scholar

  • Provencio, I., Rodriguez, I. R., Jiang, G., Hayes, W. P., Moreira, E. F. & Rollag, M. D. (2000). A novel human opsin in the inner retina. The Journal of Neuroscience, 20, 600–605. First citation in articleCrossrefGoogle Scholar

  • Sahin, L. & Figueiro, M. G. (2013). Alerting effects of short-wavelength (blue) and long-wavelength (red) lights in the afternoon. Physiology & Behavior, 116–117, 1–7. doi: 10.1016/j.physbeh First citation in articleCrossrefGoogle Scholar

  • Sauseng, P. (2012). Brain oscillations: Phase-locked EEG alpha controls perception. Current Biology, 22, R306–R308. First citation in articleCrossrefGoogle Scholar

  • Scheer, F. & Buijs, R. M. (1999). Light affects morning salivary cortisol in humans. The Journal of Clinical Endocrinology and Metabolism, 84, 3395–3398. doi: 10.1210/jcem.84.9.6102 First citation in articleCrossrefGoogle Scholar

  • Singh, Y., Singh, J., Sharma, R. & Talwar, A. (2015). FFT transformed quantitative EEG analysis of short term memory load. Annals of Neurosciences, 22, 176–179. First citation in articleCrossrefGoogle Scholar

  • Stenberg, G. (1992). Personality and the EEG: Arousal and emotional arousability. Personality and Individual Differences, 13, 1097–1113. First citation in articleCrossrefGoogle Scholar

  • Thapan, K., Arendt, J. & Skene, D. J. (2001). An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. The Journal of Physiology, 535, 261–267. First citation in articleCrossrefGoogle Scholar

  • Vandewalle, G., Maquet, P. & Dijk, D.-J. (2009). Light as a modulator of cognitive brain function. Trends in Cognitive Sciences, 13, 429–438. doi: 10.1016/j.tics.2009.07.004 First citation in articleCrossrefGoogle Scholar

  • Vandewalle, G., Schwartz, S., Grandjean, D., Wuillaume, C., Balteau, E., Degueldre, C., … Maquet, P. (2010). Spectral quality of light modulates emotional brain responses in humans. Proceedings of the National Academy of Sciences of the United States of America, 107, 19549–19554. First citation in articleCrossrefGoogle Scholar

  • Wong, K. Y., Dunn, F. A. & Berson, D. M. (2005). Photoreceptor adaptation in intrinsically photosensitive retinal ganglion cells. Neuron, 48, 1001–1010. First citation in articleCrossrefGoogle Scholar

  • Wood, B., Rea, M. S., Plitnick, B. & Figueiro, M. G. (2013). Light level and duration of exposure determine the impact of self-luminous tablets on melatonin suppression. Applied Ergonomics, 44, 23740. First citation in articleCrossrefGoogle Scholar

  • Zeitzer, J. M., Dijk, D. J., Kronauer, R. E., Brown, E. N. & Czeisler, C. A. (2000). Sensitivity of the human circadian pacemaker to nocturnal light: Melatonin phase resetting and suppression. The Journal of Physiology, 526, 695–702. First citation in articleCrossrefGoogle Scholar

  • Zyss, T., Hesse, R. T. & Zięba, A. (2009). Rozmieszczanie elektrod podstawowych w układzie 10–20 [Arrangement of basic electrodes in the system 10-20]. In T. ZyssEd., Zastosowanie układu 10–20 w rozmieszczaniu elektrod do EEG. (pp. 36–62). Warszawa, Poland: Biblioteka Elmiko. First citation in articleGoogle Scholar