Skip to main content
Article

The Effect of the Menstrual Cycle on Daily Measures of Heart Rate Variability in Athletic Women

Published Online:https://doi.org/10.1027/0269-8803/a000237

Abstract. Heart rate variability (HRV) is a biomarker used to reflect both healthy and pathological state(s). The effect of the menstrual cycle and menstrual cycle phases (follicular, luteal) on HRV remains unclear. Active eumenorrheic women free from exogenous hormones completed five consecutive weeks of daily, oral basal body temperature (BBT) and HRV measurements upon waking. Descriptive statistics were used to characterize shifts in the HRV measures: standard deviation of NN intervals (SDNN), root mean square of successive difference (rMSSD), high (HF) and low frequency (LF) across the menstrual cycle and between phases. All HRV measures were assessed by medians (Mdn), median difference of consecutive days (Mdn∆) and variance. Seven participants (M ± SD; age: 28.60 ± 8.40 year) completed the study with regular menstrual cycles (28.40 ± 2.30 days; ovulation day 14.57 ± 0.98 day). Median rMSSD displayed a nonlinear decrease across the menstrual cycle and plateau around the day of ovulation. A negative shift before ovulation in Mdn∆, rMSSD, SDNN, and LF as well as peak on luteal phase Day 4 in rMSSD and SDNN was observed. Median variance increased in rMSSD (150.06 ms2) SDNN (271.12 ms2), and LF variance (0.001 sec2/Hz) from follicular to luteal phase. Daily HRV associated with the parasympathetic nervous system was observed to decrease nonlinearly across the menstrual cycle.

References

  • Altini, M. (2013). HRV4Training. Retrieved from http://www.hrv4training.com/ First citation in articleGoogle Scholar

  • Altini, M., & Amft, O. (2016). HRV4Training: Large-scale longitudinal training load analysis in unconstrained free-living settings using a smartphone application. 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016, 2610–2613. https://doi.org/10.1109/EMBC.2016.7591265 First citation in articleGoogle Scholar

  • Baerwald, A. R., Adams, G. P., & Pierson, R. A. (2012). Ovarian antral folliculogenesis during the human menstrual cycle: A review. Human Reproduction Update, 18, 73–91. https://doi.org/10.1093/humupd/dmr039 First citation in articleCrossrefGoogle Scholar

  • Banhalmi, A., Borbas, J., Fidrich, M., Bilicki, V., Gingl, Z., & Rudas, L. (2018). Analysis of a pulse rate variability measurement using a smartphone camera. Journal of Healthcare Engineering, 2018, 4038034. https://doi.org/10.1155/2018/4038034 First citation in articleCrossrefGoogle Scholar

  • Bai, X., Li, J., Zhou, L., & Li, X. (2009). Influence of the menstrual cycle on nonlinear properties of heart rate variability in young women. American Journal of Physiology: Heart and Circulatory Physiology, 297, H765–H774. https://doi.org/10.1152/ajpheart.01283.2008 First citation in articleCrossrefGoogle Scholar

  • Brar, T. K., Singh, K. D., & Kumar, A. (2015). Effect of different phases of menstrual cycle on heart rate variability (HRV). Journal of Clinical and Diagnostic Research, 9, CC01–CC04. https://doi.org/10.7860/JCDR/2015/13795.6592 First citation in articleGoogle Scholar

  • Brunt, V. E., Miner, J. A., Kaplan, P. F., Halliwill, J. R., Strycker, L. A., & Minson, C. T. (2013). Short-term administration of progesterone and estradiol independently alter carotid-vasomotor, but not carotid-cardiac, baroreflex function in young women. American Journal of Physiology: Heart and Circulatory Physiology, 305, H1041–H1049. https://doi.org/10.1152/ajpheart.00194.2013 First citation in articleCrossrefGoogle Scholar

  • Buchheit, M. (2014). Monitoring training status with HR measures: Do all roads lead to Rome? Frontiers in Physiology, 5, 1–19. https://doi.org/10.3389/fphys.2014.00073 First citation in articleCrossrefGoogle Scholar

  • Charlot, K., Cornolo, J., Brugniaux, J. V., Richalet, J. P., & Pichon, A. (2009). Interchangeability between heart rate and photoplethysmography variabilities during sympathetic stimulations. Physiological Measurement, 30, 1357–1369. https://doi.org/10.1088/0967-3334/30/12/005 First citation in articleCrossrefGoogle Scholar

  • Clarke, I. J. (2015). Hypothalamus as an endocrine organ. Comprehensive Physiology, 5, 217–253. https://doi.org/10.1002/cphy.c140019 First citation in articleGoogle Scholar

  • Ernst, G. (2017). Heart-rate variability – more than heart beats? Frontiers in Public Health, 5, 1–12. https://doi.org/10.3389/fpubh.2017.00240 First citation in articleCrossrefGoogle Scholar

  • Farage, M. A., Neill, S., & MacLean, A. B. (2009). Physiological changes associated with the menstrual cycle. Obstetrical & Gynecological Survey, 64, 58–72. https://doi.org/10.1097/OGX.0b013e3181932a37 First citation in articleCrossrefGoogle Scholar

  • Fehring, R., Schneider, M., & Raviele, K. (2006). Variability in the phases of the menstrual cycle. Journal of Obstetric, Gynecologic and Neonatal Nursing, 35, 276–384. https://doi.org/10.1111/j.1552-6909.2006.00051.x First citation in articleCrossrefGoogle Scholar

  • Freundl, G., Frank-Herrmann, P., Brown, S., & Blackwell, L. (2014). A new method to detect significant basal body temperature changes during a woman’s menstrual cycle. The European Journal of Contraception & Reproductive Health Care, 19, 392–400. https://doi.org/10.3109/13625187.2014.948612 First citation in articleCrossrefGoogle Scholar

  • Grant, C. C., Viljoen, M., Van Rensburg, D. C. J., & Wood, P. S. (2012). Heart rate variability assessment of the effect of physical training on autonomic cardiac control. Annals of Noninvasive Electrocardiology, 17, 219–229. https://doi.org/10.1111/j.1542-474X.2012.00511.x First citation in articleCrossrefGoogle Scholar

  • Hill, L. K., Hu, D., Koenig, J., Sollers, J. III, Kapuku, G., Wang, X., … Thayer, J. (2015). Ethnic differences in resting heart rate variability: A systematic review and meta-analysis. Psychosomatic Medicine, 77, 16–25. https://doi.org/10.1097/PSY.0000000000000133 First citation in articleCrossrefGoogle Scholar

  • Koenig, J., & Thayer, J. F. (2016). Sex differences in healthy human heart rate variability: A meta-analysis. Neuroscience and Biobehavioral Reviews, 64, 288–310. https://doi.org/10.1016/j.neubiorev.2016.03.007 First citation in articleCrossrefGoogle Scholar

  • Laborde, S., Mosley, E., & Thayer, J. F. (2017). Heart rate variability and cardiac vagal tone in psychophysiological research – Recommendations for experiment planning, data analysis, and data reporting. Frontiers in Psychology, 8, 1–18. https://doi.org/10.3389/fpsyg.2017.00213 First citation in articleCrossrefGoogle Scholar

  • Lebrun, C. M., & Joyce, S. M. (2013). Effects of female reproductive hormones on sports performance. In N. ConstantiniA. C. HackneyEds., Endocrinology of physical activity and sport (pp. 281–322). Totowa, NJ: Humana Press. https://doi.org/10.1007/978-1-62703-314-5 First citation in articleGoogle Scholar

  • Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E., Malliani, A., Moss, A. J., … Schwartz, J. (1996). Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17, 354–381. https://doi.org/10.1093/oxfordjournals.eurheartj.a014868 First citation in articleCrossrefGoogle Scholar

  • Matsumoto, T., Ushiroyama, T., Morimura, M., Moritani, T., Hayashi, T., Suzuki, T., & Tatsumi, N. (2006). Autonomic nervous system activity in the late luteal phase of eumenorrheic women with premenstrual symptomatology. Journal of Psychosomatic Obstetrics and Gynecology, 27, 131–139. https://doi.org/10.1080/01674820500490218 First citation in articleCrossrefGoogle Scholar

  • McKinley, P. S., King, A. R., Shapiro, P. A., Slavov, I., Fang, Y., Chen, I. S., … Sloan, R. P. (2009). The impact of menstrual cycle phase on cardiac autonomic regulation. Psychophysiology, 46, 904–911. https://doi.org/10.1111/j.1469-8986.2009.00811.x First citation in articleCrossrefGoogle Scholar

  • Mihm, M., Gangooly, S., & Muttukrishna, S. (2011). The normal menstrual cycle in women. Animal Reproduction Science, 124, 229–236. https://doi.org/10.1016/j.anireprosci.2010.08.030 First citation in articleCrossrefGoogle Scholar

  • Nunan, D., Sandercock, G. R. H., & Brodie, D. A. (2010). A quantitative systematic review of normal values for short-term heart rate variability in healthy adults. Pacing and Clinical Electrophysiology, 33, 1407–1417. https://doi.org/10.1111/j.1540-8159.2010.02841.x First citation in articleCrossrefGoogle Scholar

  • Plews, D. J., Scott, B., Altini, M., Wood, M., Kilding, A. E., & Laursen, P. B. (2017). Comparison of heart rate variability recording with smart phone photoplethysmographic, Polar H7 chest strap and electrocardiogram methods. International Journal of Sports Physiology and Performance, 12, 1324–1328. https://doi.org/10.1123/ijspp.2016-0668 First citation in articleCrossrefGoogle Scholar

  • Salerni, S., Di Francescomarino, S., Cadeddu, C., Acquistapace, F., Maffei, S., & Gallina, S. (2015). The different role of sex hormones on female cardiovascular physiology and function: Not only oestrogens. European Journal of Clinical Investigation, 45, 634–645. https://doi.org/10.1111/eci.12447 First citation in articleCrossrefGoogle Scholar

  • Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms. Frontiers in Public Health, 5, 1–17. https://doi.org/10.3389/fpubh.2017.00258 First citation in articleCrossrefGoogle Scholar

  • Stachenfeld, N. S. (2005). Progesterone increases plasma volume independent of estradiol. Journal of Applied Physiology, 98, 1991–1997. https://doi.org/10.1152/japplphysiol.00031.2005 First citation in articleCrossrefGoogle Scholar

  • Tenan, M. S., Brothers, R. M., Tweedell, A. J., Hackney, A. C., & Griffin, L. (2014). Changes in resting heart rate variability across the menstrual cycle. Psychophysiology, 51, 996–1004. https://doi.org/10.1111/psyp.12250 First citation in articleCrossrefGoogle Scholar

  • Vallejo, M., Márquez, M. F., Borja-Aburto, V. H., Cárdenas, M., & Hermosillo, A. G. (2005). Age, body mass index, and menstrual cycle influence young women’s heart rate variability: A multivariable analysis. Clinical Autonomic Research, 15, 292–298. https://doi.org/10.1007/s10286-005-0272-9 First citation in articleCrossrefGoogle Scholar

  • Verkuil, B., Brosschot, J. F., Tollenaar, M. S., Lane, R. D., & Thayer, J. F. (2016). Prolonged Non-metabolic heart rate variability reduction as a physiological marker of psychological stress in daily life. Annals of Behavioral Medicine, 50, 704–714. https://doi.org/10.1007/s12160-016-9795-7 First citation in articleCrossrefGoogle Scholar

  • von Holzen, J. J., Capaldo, G., Wilhelm, M., & Stute, P. (2016). Impact of endo- and exogenous estrogens on heart rate variability in women: A review. Climacteric, 19, 222–228. https://doi.org/10.3109/13697137.2016.1145206 First citation in articleCrossrefGoogle Scholar

  • Voss, A., Schroeder, R., Heitmann, A., Peters, A., & Perz, S. (2015). Short-term heart rate variability – Influence of gender and age in healthy subjects. PLoS ONE, 10, 1–33. https://doi.org/10.1371/journal.pone.0118308 First citation in articleCrossrefGoogle Scholar

  • Weinschenk, S. W., Beise, R. D., & Lorenz, J. (2016). Heart rate variability (HRV) in deep breathing tests and 5-min short-term recordings: Agreement of ear photoplethysmography with ECG measurements, in 343 subjects. European Journal of Applied Physiology, 116, 1527–1535. https://doi.org/10.1007/s00421-016-3401-3 First citation in articleCrossrefGoogle Scholar

  • Young, H. A., & Benton, D. (2018). Heart-rate variability. Behavioural Pharmacology, 29, 140–151. https://doi.org/10.1097/FBP.0000000000000383 First citation in articleCrossrefGoogle Scholar