Skip to main content
Article

Temperament Predictors of Motor Imagery Control in BCI

Published Online:https://doi.org/10.1027/0269-8803/a000252

Abstract. The aim of this study was to verify if selected temperament traits may be useful as predictors of motor imagery brain-computer interface (BCI) performance. In our experiment, 40 BCI-naive subjects were instructed to imagine the movement of clenching his/her right or left hand, in accordance with the visual cue. The activity of sensorimotor rhythms (SMR) (8–30 Hz) was measured by electroencephalography (EEG) and transformed into the information transfer rate (ITR) after feature selection and classification. All subjects also completed a self-assessment questionnaire for the determination of their temperament profile, comprising the following traits: Briskness, Perseveration, Sensory Sensitivity, Emotional Reactivity, Endurance, and Activity. We found significant correlations between ITR performance and Endurance (EN) and Perseveration (PE) scores. This effect was also visible in a topography of SMR desynchronization patterns, in groups with different results in EN and PE scales. Finally, a predictive model of motor imagery BCI control based on temperament traits was proposed. We interpret this finding as empirical support for an influence of basic, relatively stable personality traits on BCI control via the performance of the motor imagery task. Moreover, the implication of these results on the design of future brain-computer interfaces was discussed.

References

  • Ahn, M., Cho, H., Ahn, S., & Jun, S. C. (2013). High theta and low alpha powers may be indicative of BCI-illiteracy in motor imagery. PLoS One, 8, e80886. https://doi.org/10.1371/journal.pone.0080886 First citation in articleCrossrefGoogle Scholar

  • Ahn, M., & Jun, S. C. (2015). Performance variation in motor imagery brain-computer interface: A brief review. Journal of Neuroscience Methods, 243, 103–110. https://doi.org/10.1016/j.jneumeth.2015.01.033 First citation in articleCrossrefGoogle Scholar

  • Bell, C. J., Shenoy, P., Chalodhorn, R., & Rao, R. P. (2008). Control of a humanoid robot by a noninvasive brain-computer interface in humans. Journal of Neural Engineering, 5, 214–220. https://doi.org/10.1088/1741-2560/5/2/012 First citation in articleCrossrefGoogle Scholar

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57, 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x First citation in articleCrossrefGoogle Scholar

  • Biernacki, M., & Tarnowski, A. (2008). The relationship between temperamental traits and the level of performance of an eye-hand co-ordination task in jet pilots. International Journal of Occupational Safety and Ergonomics, 14, 423–432. https://doi.org/10.1080/10803548.2008.11076780 First citation in articleCrossrefGoogle Scholar

  • Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., & Muller, K. R. (2008). Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Processing Magazine, 25, 41–56. https://doi.org/10.1109/MSP.2008.4408441 First citation in articleCrossrefGoogle Scholar

  • Broetz, D., Braun, C., Weber, C., Soekadar, S. R., Caria, A., & Birbaumer, N. (2010). Combination of brain-computer interface training and goal-directed physical therapy in chronic stroke: A case report. Neurorehabilitation and Neural Repair, 24, 674–679. https://doi.org/10.1177/1545968310368683 First citation in articleCrossrefGoogle Scholar

  • Burde, W., & Blankertz, B. (2006). Is the locus of control of reinforcement a predictor of brain-computer interface performance?. In G. R. Müller-PutzC. BrunnerR. LeebR. SchererA. SchlöglS. WriessneggerG. PfurtschellerEds., Proceedings of the 3rd International Brain-Computer Interface Workshop and Training Course (Vol. 2006, pp. 108–109). Graz, Austria: TU Graz/Büroservice. First citation in articleGoogle Scholar

  • Cousineau, D., & Chartier, S. (2010). Outliers detection and treatment: a review. International Journal of Psychological Research, 3, 58–67. https://doi.org/10.21500/20112084.844 First citation in articleCrossrefGoogle Scholar

  • Coyle, S., Ward, T., Markham, C., & McDarby, G. (2004). On the suitability of near-infrared (NIR) systems for next-generation brain-computer interfaces. Physiological Measurement, 25, 815–822. https://doi.org/10.1088/0967-3334/25/4/00 First citation in articleCrossrefGoogle Scholar

  • Curran, E. A., & Stokes, M. J. (2003). Learning to control brain activity: A review of the production and control of EEG components for driving brain-computer interface (BCI) systems. Brain and Cognition, 51, 326–336. https://doi.org/10.1016/S0278-2626(03)00036-8 First citation in articleCrossrefGoogle Scholar

  • De Pascalis, V., Strelau, J., & Zawadzki, B. (1999). The effect of temperamental traits on event-related potentials, heart rate and reaction time. Personality and Individual Differences, 26, 441–465. https://doi.org/10.1016/S0191-8869(98)00151-2 First citation in articleCrossrefGoogle Scholar

  • Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009 First citation in articleCrossrefGoogle Scholar

  • Dragan, M., & Dragan, W. (2014). Temperament and anxiety: The mediating role of metacognition. Journal of Psychopathology and Behavioral Assessment, 36, 246–254. https://doi.org/10.1007/s10862-013-9392-z First citation in articleCrossrefGoogle Scholar

  • Durka, P. J., Ircha, D., Neuper, C., & Pfurtscheller, G. (2001). Time- frequency microstructure of event-related electro-encephalogram desynchronisation and synchronisation. Medical and Biological Engineering and Computing, 39, 315–321. https://doi.org/10.1007/bf02345286 First citation in articleCrossrefGoogle Scholar

  • Field, A. (2013). Discovering statistics using IBM SPSS Statistics. Los Angeles, NY/London, UK/New Delhi, India/Singapore/Washington, DC: Sage Publications. First citation in articleGoogle Scholar

  • Gregg, M., Hall, C., & Butler, A. (2010). The MIQ-RS: A suitable option for examining movement imagery ability. Evidence-Based Complementary and Alternative Medicine, 7, 249–257. https://doi.org/10.1093/ecam/nem170 First citation in articleCrossrefGoogle Scholar

  • Grubbs, F. E. (1950). Sample criteria for testing outlying observations. The Annals of Mathematical Statistics, 21, 27–58. https://doi.org/10.1214/aoms/1177729885 First citation in articleCrossrefGoogle Scholar

  • Hammer, E. M., Halder, S., Blankertz, B., Sannelli, C., Dickhaus, T., Kleih, S., Müller, K. R., & Kübler, A. (2012). Psychological predictors of SMR-BCI performance. Biological Psychology, 89, 80–86. https://doi.org/10.1016/j.biopsycho.2011.09.006 First citation in articleCrossrefGoogle Scholar

  • Hammer, E. M., Kaufmann, T., Kleih, S. C., Blankertz, B., & Kübler, A. (2014). Visuo-motor coordination ability predicts performance with brain-computer interfaces controlled by modulation of sensorimotor rhythms (SMR). Frontiers in Human Neuroscience, 8, 574. https://doi.org/10.3389/fnhum.2014.00574 First citation in articleCrossrefGoogle Scholar

  • Hochberg, L. R., Bacher, D., Jarosiewicz, B., Masse, N. Y., Simeral, J. D., Vogel, J., … Donoghue, J. P. (2012). Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature, 485, 372–375. https://doi.org/10.1038/nature11076 First citation in articleCrossrefGoogle Scholar

  • Hochberg, L. R., Serruya, M. D., Friehs, G. M., Mukand, J. A., Saleh, M., Caplan, A. H., … Donoghue, J. P. (2006). Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature, 442, 164–171. https://doi.org/10.1038/nature04970 First citation in articleCrossrefGoogle Scholar

  • Huang, D., Qian, K., Fei, D. Y., Jia, W., Chen, X., & Bai, O. (2012). Electroencephalography (EEG)-based brain-computer interface (BCI): A 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20, 379–388. https://doi.org/10.1109/TNSRE.2012.2190299 First citation in articleCrossrefGoogle Scholar

  • Hwang, H. J., Kim, S., Choi, S., & Im, C. H. (2013). EEG-based brain-computer interfaces: A Thorough literature survey. International Journal of Human-Computer Interaction, 29, 814–826. https://doi.org/10.1080/10447318.2013.780869 First citation in articleCrossrefGoogle Scholar

  • Jeunet, C., N’Kaoua, B., & Lotte, F. (2016). Advances in user-training for mental-imagery-based BCI control: Psychological and cognitive factors and their neural correlates. In D. CoyleEd., Progress in brain research (Vol. 228, pp. 3–35). Philadelphia, PA: Elsevier. https://doi.org/10.1016/bs.pbr.2016.04.002 First citation in articleGoogle Scholar

  • Jeunet, C., N’Kaoua, B., Subramanian, S., Hachet, M., & Lotte, F. (2015). Predicting mental imagery-based BCI performance from personality, cognitive profile and neurophysiological patterns. PLoS One, 10, e0143962. https://doi.org/10.1371/journal.Pone.0143962 First citation in articleCrossrefGoogle Scholar

  • Kleih, S. C., Kaufmann, T., Hammer, E., Pisotta, I., Pichiorri, F., Riccio, A., … Kübler, A. (2013). Motivation and SMR-BCI: fear of failure affects BCI performance. In J. d. R. MillanS. GaoG. Müller-PutzJ. R. WolpawJ. E. HugginsEds., Proceedings of the Fifth International Brain-Computer Interface Meeting 2013 (pp. 160–161). Graz, Austria: Verlag der Technischen Universität Graz. First citation in articleGoogle Scholar

  • Kübler, A., & Müller, K. R. (2007). An introduction to brain-computer interfacing. In G. DornbhegeJ. D. R. MillanT. HinterbergerD. J. McFarlandK. R. MullerEds., Toward brain-computer interfacing (pp. 1–25). Cambridge, MA: MIT Press. First citation in articleGoogle Scholar

  • Leuthardt, E. C., Schalk, G., Wolpaw, J. R., Ojemann, J. G., & Moran, D. W. (2004). A brain-computer interface using electrocorticographic signals in humans. Journal of Neural Engineering, 1, 63–71. https://doi.org/10.1088/1741-2560/1/2/001 First citation in articleCrossrefGoogle Scholar

  • Lugger, K., Flotzinger, D., Schlögl, A., Pregenzer, M., & Pfurtscheller, G. (1998). Feature extraction for on-line EEG classification using principal components and linear discriminants. Medical and Biological Engineering and Computing, 36, 309–314. https://doi.org/10.1007/BF02522476 First citation in articleCrossrefGoogle Scholar

  • Maeder, C. L., Sannelli, C., Haufe, S., & Blankertz, B. (2012). Pre-stimulus sensorimotor rhythms influence brain–computer interface classification performance. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20, 653–662. https://doi.org/10.1109/TNSRE.2012.2205707 First citation in articleCrossrefGoogle Scholar

  • Makeig, S. (1993). Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. Electroencephalography and Clinical Neurophysiology, 86, 283–293. https://doi.org/10.1016/0013-4694(93)90110-H First citation in articleCrossrefGoogle Scholar

  • Marchesotti, S., Bassolino, M., Serino, A., Bleuler, H., & Blanke, O. (2016). Quantifying the role of motor imagery in brain-machine interfaces. Scientific Reports, 6, 24076. https://doi.org/10.1038/srep24076 First citation in articleCrossrefGoogle Scholar

  • Mellinger, J., Schalk, G., Braun, C., Preissl, H., Rosenstiel, W., Birbaumer, N., & Kübler, A. (2007). An MEG-based brain-computer interface (BCI). NeuroImage, 36, 581–593. https://doi.org/10.1016/j.neuroimage.2007.03.019 First citation in articleCrossrefGoogle Scholar

  • Nijboer, F., Birbaumer, N., & Kubler, A. (2010). The influence of psychological state and motivation on brain-computer interface performance in patients with amyotrophic lateral sclerosis – a longitudinal study. Frontiers in Neuroscience, 4, 55. https://doi.org/10.3389/fnins.2010.00055 First citation in articleGoogle Scholar

  • Pfurtscheller, G., Guger, C., Müller, G., Krausz, G., & Neuper, C. (2000). Brain oscillations control hand orthosis in a tetraplegic. Neuroscience Letters, 292, 211–214. https://doi.org/10.1016/S0304-3940(00)01471-3 First citation in articleCrossrefGoogle Scholar

  • Pfurtscheller, G., & Lopes da Silva, F. H. (1999). Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clinical Neurophysiology, 110, 1842–1857. https://doi.org/10.1016/S1388-2457(99)00141-8 First citation in articleCrossrefGoogle Scholar

  • Posse, S., Fitzgerald, D., Gao, K., Habel, U., Rosenberg, D., Moore, G. J., & Schneider, F. (2003). Real-time fMRI of temporolimbic regions detects amygdala activation during single-trial self-induced sadness. NeuroImage, 18, 760–768. https://doi.org/10.1016/S1053-8119(03)00004-1 First citation in articleCrossrefGoogle Scholar

  • Ramoser, H., Muller-Gerking, J., & Pfurtscheller, G. (2000). Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Transactions on Rehabilitation Engineering, 8, 441–446. https://doi.org/10.1109/86.895946 First citation in articleCrossrefGoogle Scholar

  • Randolph, A. B. (2012). Not all created equal: Individual-technology fit of brain-computer interfaces. In R. H. Sprague Jr.Ed., System Science (HICSS), 2012 45th Hawaii International Conference on, IEEE (pp. 572–578). Washington, DC: IEEE Computer Society. First citation in articleGoogle Scholar

  • Randolph, A. B., Jackson, M. M., & Karmakar, S. (2010). Individual characteristics and their effect on predicting mu rhythm modulation. International Journal of Human-Computer Interaction, 27, 24–37. https://doi.org/10.1080/10447318.2011.535750 First citation in articleCrossrefGoogle Scholar

  • Rimbert, S., Gayraud, N., Bougrain, L., Clerc, M., & Fleck, S. (2019). Can a subjective questionnaire be used as brain-computer interface performance predictor? Frontiers in Human Neuroscience, 12, 529. https://doi.org/10.3389/fnhum.2018.00529 First citation in articleCrossrefGoogle Scholar

  • Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Urbana, IL: University of Illinois Press. First citation in articleGoogle Scholar

  • Sitaram, R., Lee, S., & Birbaumer, N. (2012). BCIs that use brain metabolic signals. In J. R. WolpawE. W. WolpawEds., Brain-computer interfaces: Principles and practice (pp. 301–314). New York, NY: Oxford University Press. First citation in articleGoogle Scholar

  • Sitaram, R., Zhang, H., Guan, C., Thulasidas, M., Hoshi, Y., Ishikawa, A., … Birbaumer, N. (2007). Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface. NeuroImage, 34, 1416–1427. https://doi.org/10.1016/j.neuroimage.2006.11.005 First citation in articleCrossrefGoogle Scholar

  • Stevens, J. P. (2009). Applied multivariate statistics for the social sciences (5th ed.). Hillsdale, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Strelau, J. (1983). Temperament personality activity. London, UK: Academic Press. First citation in articleGoogle Scholar

  • Strelau, J. (1993). The location of the regulative theory of temperament (RTT) among other temperament theories. In J. HettemaI. DearyEds., Biological and social approaches to individuality (pp. 113–132). Dordrecht, The Netherlands: Kluwer. First citation in articleGoogle Scholar

  • Strelau, J. (1998). Temperament: A psychological perspective. Washington, DC: Plenum Press. First citation in articleGoogle Scholar

  • Strelau, J. (2008). Temperament as a regulator of behavior: After fifty years of research. Clinton Corners, NY: Eliot Werner Publications. First citation in articleGoogle Scholar

  • Strelau, J., & Zawadzki, B. (1993). The Formal Characteristics of Behaviour-Temperament Inventory (FCB-TI): theoretical assumptions and scale construction. European Journal of Personality, 7, 313–336. https://doi.org/10.1002/per.2410070504 First citation in articleCrossrefGoogle Scholar

  • Vuckovic, A., & Osuagwu, B. A. (2013). Using a motor imagery questionnaire to estimate the performance of a brain-computer interface based on object oriented motor imagery. Clinical Neurophysiology, 124, 1586–1595. https://doi.org/10.1016/j.clinph.2013.02.016 First citation in articleCrossrefGoogle Scholar

  • Wierzgała, P., Zapała, D., Wójcik, G. M., & Masiak, J. (2018). Most popular signal processing methods in motor-imagery BCI: A review and meta-analysis. Frontiers in Neuroinformatics, 12, 78. https://doi.org/10.3389/fninf.2018.00078 First citation in articleCrossrefGoogle Scholar

  • Zapała, D., Francuz, P., Zapała, E., Kopiś, N., Wierzgała, P., Augustynowicz, P., …, M., & Kołodziej, M. (2018). The impact of different visual feedbacks in user training on motor imagery control in BCI. Applied Psychophysiology and Biofeedback, 43, 23–35. https://doi.org/10.1007/s10484-017-9383-z First citation in articleCrossrefGoogle Scholar